Siderophore-Mediated Cooperation in Anammox Consortia

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Ru Zheng, Lingrui Kong, Yiming Feng, Baiyizhuo Chen, Yuanqi Gu, Xiaogang Wu, Sitong Liu
{"title":"Siderophore-Mediated Cooperation in Anammox Consortia","authors":"Ru Zheng, Lingrui Kong, Yiming Feng, Baiyizhuo Chen, Yuanqi Gu, Xiaogang Wu, Sitong Liu","doi":"10.1021/acs.est.4c11142","DOIUrl":null,"url":null,"abstract":"It has been widely accepted that iron plays an important role in stimulating the activity of anammox bacteria, which contain many iron clusters for electron transport in cells. However, whether anammox bacteria could directly use and how to uptake Fe(III) have been long-time ignored. Here, we found that micrometer-scale magnetite with the size of 10–20 μm significantly promoted the anammox bacterial activity by iron core and iron uptake. Anammox bacteria cannot utilize Fe(III) directly as they are unable to secrete siderophore for the extracellular Fe(III) transfer to intracellular. In anaerobic anammox consortia at the presence of magnetite, siderophore synthesis bacteria belonging to <i>Alphaproteobacteria</i>, <i>Candidate phylum</i>, and <i>Chloroflexi</i> secreted abundant siderophores, which combined with Fe(III) ionized from magnetite to form siderophore-Fe(III) complexes. These complexes were then used by anammox bacteria via a specific outer membrane receptor and transported by the transporter protein to the periplasm, further releasing Fe(III). Cytochrome <i>c</i> was then formed by the siderophore-Fe(III) complex reduction, for assimilation and synthesis of Fe–S protein and heme B in anammox bacteria to increase electron transfer capability. This study reveals the siderophore-mediated bacterial cooperation in anammox consortia for Fe(III) assimilation and implies the important role of siderophore-mediated cooperation in driving nitrogen conversion in the artificial or natural system.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"72 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11142","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

It has been widely accepted that iron plays an important role in stimulating the activity of anammox bacteria, which contain many iron clusters for electron transport in cells. However, whether anammox bacteria could directly use and how to uptake Fe(III) have been long-time ignored. Here, we found that micrometer-scale magnetite with the size of 10–20 μm significantly promoted the anammox bacterial activity by iron core and iron uptake. Anammox bacteria cannot utilize Fe(III) directly as they are unable to secrete siderophore for the extracellular Fe(III) transfer to intracellular. In anaerobic anammox consortia at the presence of magnetite, siderophore synthesis bacteria belonging to Alphaproteobacteria, Candidate phylum, and Chloroflexi secreted abundant siderophores, which combined with Fe(III) ionized from magnetite to form siderophore-Fe(III) complexes. These complexes were then used by anammox bacteria via a specific outer membrane receptor and transported by the transporter protein to the periplasm, further releasing Fe(III). Cytochrome c was then formed by the siderophore-Fe(III) complex reduction, for assimilation and synthesis of Fe–S protein and heme B in anammox bacteria to increase electron transfer capability. This study reveals the siderophore-mediated bacterial cooperation in anammox consortia for Fe(III) assimilation and implies the important role of siderophore-mediated cooperation in driving nitrogen conversion in the artificial or natural system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信