Nano-Scale Insights into Clay Minerals Regulating the Fe(II)-Catalyzed Ferrihydrite Transformation under Anoxic Conditions

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Hongyan Wei, Shoushu Wei, Qingze Chen, Yixuan Yang, Xun Liu, Shiqin Long, Jing Liu, Jianxi Zhu, Runliang Zhu
{"title":"Nano-Scale Insights into Clay Minerals Regulating the Fe(II)-Catalyzed Ferrihydrite Transformation under Anoxic Conditions","authors":"Hongyan Wei, Shoushu Wei, Qingze Chen, Yixuan Yang, Xun Liu, Shiqin Long, Jing Liu, Jianxi Zhu, Runliang Zhu","doi":"10.1021/acs.est.4c11232","DOIUrl":null,"url":null,"abstract":"Metastable ferrihydrite nanoparticles and clay minerals always coexist as heteroaggregates in nature due to their abundance, opposite charge, and large interface energy. However, the impact of clay minerals on the transformation of ferrihydrite under anoxic conditions remains elusive. This study systematically investigated the effect of distinct clay minerals on the Fe(II)-catalyzed transformation of ferrihydrite and clarifying the underlying nanoscale mechanisms for the first time. Our results demonstrated that clay minerals could affect the production and recrystallization of labile Fe(III) (an active Fe(III) intermediate species formed by oxidation of Fe(II) at the ferrihydrite surface) by dispersing ferrihydrite aggregates. This modulation led to different transformation rates, higher crystallinity of formed lepidocrocite, and enhanced goethite formation in the heteroaggregates. Importantly, montmorillonite can accommodate Fe(II) and labile Fe(III) within its interlayer spaces, which further led to the inhibited crystallization of Fe(II) to magnetite and long-term preservation of labile Fe(III). Additionally, clay minerals served as templates for forming dendritic goethite and hexagonal magnetite nanoplates. Our findings provide new insights into the complicated roles of clay minerals in controlling the ferrihydrite transformation and other iron (oxyhydr)oxides formation, which is significant for predicting the bioavailability of iron and the fate of other coexisting contaminants.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"47 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11232","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metastable ferrihydrite nanoparticles and clay minerals always coexist as heteroaggregates in nature due to their abundance, opposite charge, and large interface energy. However, the impact of clay minerals on the transformation of ferrihydrite under anoxic conditions remains elusive. This study systematically investigated the effect of distinct clay minerals on the Fe(II)-catalyzed transformation of ferrihydrite and clarifying the underlying nanoscale mechanisms for the first time. Our results demonstrated that clay minerals could affect the production and recrystallization of labile Fe(III) (an active Fe(III) intermediate species formed by oxidation of Fe(II) at the ferrihydrite surface) by dispersing ferrihydrite aggregates. This modulation led to different transformation rates, higher crystallinity of formed lepidocrocite, and enhanced goethite formation in the heteroaggregates. Importantly, montmorillonite can accommodate Fe(II) and labile Fe(III) within its interlayer spaces, which further led to the inhibited crystallization of Fe(II) to magnetite and long-term preservation of labile Fe(III). Additionally, clay minerals served as templates for forming dendritic goethite and hexagonal magnetite nanoplates. Our findings provide new insights into the complicated roles of clay minerals in controlling the ferrihydrite transformation and other iron (oxyhydr)oxides formation, which is significant for predicting the bioavailability of iron and the fate of other coexisting contaminants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信