Template-assisted construction of molybdenum-doped ruthenium dioxide hollow nanospheres for highly efficient acidic oxygen evolution reaction

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Lin Zhang, Wenyuan Gao, Ziyao Liu, Man Luo, Yang Chen, Weiguang Zhang, Yibing Li, Jie Zhu
{"title":"Template-assisted construction of molybdenum-doped ruthenium dioxide hollow nanospheres for highly efficient acidic oxygen evolution reaction","authors":"Lin Zhang,&nbsp;Wenyuan Gao,&nbsp;Ziyao Liu,&nbsp;Man Luo,&nbsp;Yang Chen,&nbsp;Weiguang Zhang,&nbsp;Yibing Li,&nbsp;Jie Zhu","doi":"10.1016/j.ces.2025.121389","DOIUrl":null,"url":null,"abstract":"<div><div>Developing non-iridium-based electrocatalysts with enhanced activity and durability for acidic oxygen evolution reaction (OER) is urgently demanded for the overall efficiency of water electrolysis. In this study, a highly efficient Ti-supported Mo-doped RuO<sub>2</sub> hollow nanosphere electrocatalyst (Mo<sub>x</sub>-RuO<sub>2</sub>/Ti) is fabricated by a template-assisted method. The resulting Mo<sub>0.25</sub>-RuO<sub>2</sub>/Ti electrocatalyst with appropriate Mo doping demonstrates exceptional OER catalytic activity with a minimal overpotential of 175 mV at a current density of 10 mA cm<sup>−2</sup> and maintains a remarkable electrochemical stability of 400 h in acidic conditions, significantly superior to the commercial RuO<sub>2</sub>/Ti catalyst. Based on the experimental results and theoretical calculations, this impressive OER performance stems from the synergistic effects of the high exposure of the active sites by the hollow spherical nanostructure and the electronic modulation of Ru active sites induced by Mo doping. This study underscores an effective approach for designing highly active and stable RuO<sub>2</sub>-based electrocatalysts for acidic OER.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"308 ","pages":"Article 121389"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000925092500212X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing non-iridium-based electrocatalysts with enhanced activity and durability for acidic oxygen evolution reaction (OER) is urgently demanded for the overall efficiency of water electrolysis. In this study, a highly efficient Ti-supported Mo-doped RuO2 hollow nanosphere electrocatalyst (Mox-RuO2/Ti) is fabricated by a template-assisted method. The resulting Mo0.25-RuO2/Ti electrocatalyst with appropriate Mo doping demonstrates exceptional OER catalytic activity with a minimal overpotential of 175 mV at a current density of 10 mA cm−2 and maintains a remarkable electrochemical stability of 400 h in acidic conditions, significantly superior to the commercial RuO2/Ti catalyst. Based on the experimental results and theoretical calculations, this impressive OER performance stems from the synergistic effects of the high exposure of the active sites by the hollow spherical nanostructure and the electronic modulation of Ru active sites induced by Mo doping. This study underscores an effective approach for designing highly active and stable RuO2-based electrocatalysts for acidic OER.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信