H4K12 lactylation potentiates mitochondrial oxidative stress via the Foxo1 pathway in diabetes-induced cognitive impairment

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ying Yang, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang
{"title":"H4K12 lactylation potentiates mitochondrial oxidative stress via the Foxo1 pathway in diabetes-induced cognitive impairment","authors":"Ying Yang, Lulu Song, Liping Yu, Jinping Zhang, Bo Zhang","doi":"10.1016/j.jare.2025.02.020","DOIUrl":null,"url":null,"abstract":"<h3>Aims</h3>To investigate the role and potential mechanisms of H4K12 lactylation modifications in diabetes-related cognitive impairment (DACD).<h3>Methods</h3>Behavioral tests, HE staining, and immunohistochemistry were employed to assess cognitive function and the extent of brain tissue injury. Metabolomics and proteomics were applied to profile the metabolic regulatory network. We measured lactic acid and Pan-Kla levels in the brains of T2DM mice and high glucose-treated microglia. CUT&amp;Tag technology was utilized to identify genes regulated by H4K12la. Small interfering RNA (siRNA) sequences and adeno-associated viruses (AAVs) were used to knock down key components in signaling pathways, evaluating the impact of histone lactylation on microglial polarization.<h3>Results</h3>Lactic acid levels were significantly higher in the brains of T2DM mice and high glucose-treated microglia compared to controls, leading to an increase in pan histone lysine lactylation (Kla). We found that lactate directly induced an increase in H4K12la. CUT&amp;Tag analysis revealed that elevated H4K12la activates the FOXO1/PGC-1α signaling pathway by enhancing binding to the FOXO1 promoter, promoting mitochondrial oxidative stress.<h3>Conclusion</h3>This study demonstrated that elevated H4K12la directly activates the FOXO1 signaling pathway, promoting oxidative stress and contributing to DACD phenotypes.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"136 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.02.020","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

To investigate the role and potential mechanisms of H4K12 lactylation modifications in diabetes-related cognitive impairment (DACD).

Methods

Behavioral tests, HE staining, and immunohistochemistry were employed to assess cognitive function and the extent of brain tissue injury. Metabolomics and proteomics were applied to profile the metabolic regulatory network. We measured lactic acid and Pan-Kla levels in the brains of T2DM mice and high glucose-treated microglia. CUT&Tag technology was utilized to identify genes regulated by H4K12la. Small interfering RNA (siRNA) sequences and adeno-associated viruses (AAVs) were used to knock down key components in signaling pathways, evaluating the impact of histone lactylation on microglial polarization.

Results

Lactic acid levels were significantly higher in the brains of T2DM mice and high glucose-treated microglia compared to controls, leading to an increase in pan histone lysine lactylation (Kla). We found that lactate directly induced an increase in H4K12la. CUT&Tag analysis revealed that elevated H4K12la activates the FOXO1/PGC-1α signaling pathway by enhancing binding to the FOXO1 promoter, promoting mitochondrial oxidative stress.

Conclusion

This study demonstrated that elevated H4K12la directly activates the FOXO1 signaling pathway, promoting oxidative stress and contributing to DACD phenotypes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信