Oxygen Vacancy-Enhanced Selectivity in Aerobic Oxidation of Benzene to Phenol over TiO2 Photocatalysts

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shengyang Zhong, Dexi Yu, Yuhui Ma, Yuhong Lin, Xiaoyi Wang, Zhenzhen Yu, Meirong Huang, Yidong Hou, Masakazu Anpo, Jimmy C. Yu, Jinshui Zhang, Xinchen Wang
{"title":"Oxygen Vacancy-Enhanced Selectivity in Aerobic Oxidation of Benzene to Phenol over TiO2 Photocatalysts","authors":"Shengyang Zhong, Dexi Yu, Yuhui Ma, Yuhong Lin, Xiaoyi Wang, Zhenzhen Yu, Meirong Huang, Yidong Hou, Masakazu Anpo, Jimmy C. Yu, Jinshui Zhang, Xinchen Wang","doi":"10.1002/anie.202502823","DOIUrl":null,"url":null,"abstract":"Photocatalytic oxidation of benzene to phenol using molecular O2 is a promising alternative to the traditional cumene process. However, the selectivity toward phenol is often poor due to the ring-opening reaction induced by the superoxide radical (·O2-), which is predominantly produced from the single-electron reduction of O2. Herein, we demonstrate that introducing abundant oxygen vacancies (OVs) on the surface of TiO2 facilitates the activation of O2 through a two-electron reduction process instead of a single-electron reduction. This effectively suppresses the generation of·O2-, thereby reducing phenol decomposition and significantly enhancing the selectivity. In addition, these OVs can trap the electrons to promote chare separation and serve as the adsorption sites for O2 activation. As a result, the introduction of abundant OVs on the surface of TiO2 not only enhances phenol yield but also importantly improves selectivity toward phenol. This finding enriches our understanding of how OVs influence reaction pathways and product selectivity, providing valuable insights for the design and tailoring of OV-rich photocatalysts for selective organic oxygenations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"137 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202502823","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic oxidation of benzene to phenol using molecular O2 is a promising alternative to the traditional cumene process. However, the selectivity toward phenol is often poor due to the ring-opening reaction induced by the superoxide radical (·O2-), which is predominantly produced from the single-electron reduction of O2. Herein, we demonstrate that introducing abundant oxygen vacancies (OVs) on the surface of TiO2 facilitates the activation of O2 through a two-electron reduction process instead of a single-electron reduction. This effectively suppresses the generation of·O2-, thereby reducing phenol decomposition and significantly enhancing the selectivity. In addition, these OVs can trap the electrons to promote chare separation and serve as the adsorption sites for O2 activation. As a result, the introduction of abundant OVs on the surface of TiO2 not only enhances phenol yield but also importantly improves selectivity toward phenol. This finding enriches our understanding of how OVs influence reaction pathways and product selectivity, providing valuable insights for the design and tailoring of OV-rich photocatalysts for selective organic oxygenations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信