Solvent Chemistry Manipulated Iodine Redox Thermodynamics For Durable Iodine Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tingting Liu, Chengjun Lei, Wei Yang, Huijian Wang, Wenjiao Ma, Jinye Li, Prof. Xiao Liang
{"title":"Solvent Chemistry Manipulated Iodine Redox Thermodynamics For Durable Iodine Batteries","authors":"Tingting Liu,&nbsp;Chengjun Lei,&nbsp;Wei Yang,&nbsp;Huijian Wang,&nbsp;Wenjiao Ma,&nbsp;Jinye Li,&nbsp;Prof. Xiao Liang","doi":"10.1002/anie.202422163","DOIUrl":null,"url":null,"abstract":"<p>The diverse valences of iodine enable it with multi-electron transfer capability for energy dense batteries. However, previous studies indicate that the primary I<sup>−</sup>/I<sub>2</sub> redox couple exhibits distinct behaviors depending on electrolyte choice, with the mechanistic basis of aqueous versus nonaqueous systems remaining unclear. Here, we elucidated the solvent effect on iodine redox, particularly focusing on polyiodide formation and their molecular interaction correlations. We validate that a thermodynamically one-step conversion reaction (I<sub>2</sub> ↔ I<sup>−</sup>) occurs in the protic solvents, while it is a two-step transformation (I<sub>2</sub> ↔ I<sub>3</sub><sup>−</sup> ↔ I<sup>−</sup>) in aprotic solvents. This distinction arises from strong electron-donating properties in aprotic solvents that facilitate charge transfer with iodine, promoting complexation with iodide as solvent⋅I<sub>3</sub><sup>−</sup> species. Conversely, protic solvents form additional hydrogen bonds with iodine, alleviating polarization and reducing interaction with iodide. Furthermore, to address the limitations of single protic electrolytes – characterized by sluggish dissolution-precipitation and slow ion migration rates – we propose a hybrid electrolyte combining water and ethylene glycol. These hybrids enhance iodine redox kinetics, inhibits I<sub>3</sub><sup>−</sup> generation, and modifies the Zn<sup>2+</sup> solvation structure to mitigate zinc anode corrosion and dendrite. The Zn−I<sub>2</sub> batteries demonstrates exceptional long-term cycling stability in a wide temperature range, highlighting its potential for practical applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 18","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202422163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The diverse valences of iodine enable it with multi-electron transfer capability for energy dense batteries. However, previous studies indicate that the primary I/I2 redox couple exhibits distinct behaviors depending on electrolyte choice, with the mechanistic basis of aqueous versus nonaqueous systems remaining unclear. Here, we elucidated the solvent effect on iodine redox, particularly focusing on polyiodide formation and their molecular interaction correlations. We validate that a thermodynamically one-step conversion reaction (I2 ↔ I) occurs in the protic solvents, while it is a two-step transformation (I2 ↔ I3 ↔ I) in aprotic solvents. This distinction arises from strong electron-donating properties in aprotic solvents that facilitate charge transfer with iodine, promoting complexation with iodide as solvent⋅I3 species. Conversely, protic solvents form additional hydrogen bonds with iodine, alleviating polarization and reducing interaction with iodide. Furthermore, to address the limitations of single protic electrolytes – characterized by sluggish dissolution-precipitation and slow ion migration rates – we propose a hybrid electrolyte combining water and ethylene glycol. These hybrids enhance iodine redox kinetics, inhibits I3 generation, and modifies the Zn2+ solvation structure to mitigate zinc anode corrosion and dendrite. The Zn−I2 batteries demonstrates exceptional long-term cycling stability in a wide temperature range, highlighting its potential for practical applications.

Abstract Image

持久碘电池的溶剂化学操纵碘氧化还原热力学
碘的不同价使其具有多电子转移能力,可用于能量密集电池。然而,先前的研究表明,主要的I−/I2氧化还原偶对根据电解质的选择表现出不同的行为,而水与非水体系的机制基础尚不清楚。在此,我们阐明了溶剂对碘氧化还原的影响,特别关注多碘化物的形成及其分子相互作用的相关性。我们证实在质子溶剂中有一个热力学一步转化反应(I2↔I−),而在非质子溶剂中有一个两步转化反应(I2↔I3−↔I−)。这种区别源于非质子溶剂中强的给电子性质,促进了与碘的电荷转移,促进了与碘化物作为溶剂·I3−的络合作用。相反,质子溶剂与碘形成额外的氢键,减轻极化,减少与碘的相互作用。此外,为了解决单一质子电解质的局限性,即溶解沉淀缓慢和离子迁移速度慢,我们提出了一种由水和乙二醇组成的混合电解质。这些杂化物增强了碘氧化还原动力学,抑制了I3 -的产生,并改变了Zn2+的溶剂化结构,以减轻锌阳极的腐蚀和枝晶的形成。锌- i₂电池在宽温度范围内表现出优异的长期循环稳定性,突出了其实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信