Techno-economic Assessment of the Industrial-Scale Production of Epoxidized Kraft Lignin for Adhesives or Coatings

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Susanna Forssell, Rahul Prasad Bangalore Ashok, Karl Alexander Henn, Esko Tirronen, John Toivonen, Monika Österberg, Pekka Oinas
{"title":"Techno-economic Assessment of the Industrial-Scale Production of Epoxidized Kraft Lignin for Adhesives or Coatings","authors":"Susanna Forssell, Rahul Prasad Bangalore Ashok, Karl Alexander Henn, Esko Tirronen, John Toivonen, Monika Österberg, Pekka Oinas","doi":"10.1021/acssuschemeng.4c09146","DOIUrl":null,"url":null,"abstract":"Lignin is an abundantly available biopolymer and as such has an emerging potential for utilization in value-added applications. The designed industrial-scale process utilizes equipment that is currently in use on an industrial scale, which favors the scale-up of the process. A novel process model in Aspen Plus provides the mass and energy balances of the production process. The main processing steps are lignin solution preparation, epoxidation reaction, solvent separation, solvent recycling, and product recovery. The production process itself produces a negligible amount of waste and has no greenhouse gas emissions. The greenhouse gas emissions of utility production depend on the energy source and fall close to zero if green energy is used. The recycling rates of the unreacted solvents are over 99%, and it is possible to use biobased solvents in the process. Efficient solvent recycling is a key parameter for the profitability of the process. The minimum selling price of epoxidized kraft lignin was estimated as 0.68 €/kg when produced in a plant integrated with an existing pulp mill or biorefinery. This research shows that the epoxidized kraft lignin production process is technically and economically feasible in the current adhesive and coatings markets.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"7 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c09146","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin is an abundantly available biopolymer and as such has an emerging potential for utilization in value-added applications. The designed industrial-scale process utilizes equipment that is currently in use on an industrial scale, which favors the scale-up of the process. A novel process model in Aspen Plus provides the mass and energy balances of the production process. The main processing steps are lignin solution preparation, epoxidation reaction, solvent separation, solvent recycling, and product recovery. The production process itself produces a negligible amount of waste and has no greenhouse gas emissions. The greenhouse gas emissions of utility production depend on the energy source and fall close to zero if green energy is used. The recycling rates of the unreacted solvents are over 99%, and it is possible to use biobased solvents in the process. Efficient solvent recycling is a key parameter for the profitability of the process. The minimum selling price of epoxidized kraft lignin was estimated as 0.68 €/kg when produced in a plant integrated with an existing pulp mill or biorefinery. This research shows that the epoxidized kraft lignin production process is technically and economically feasible in the current adhesive and coatings markets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信