Biphenylene-Based Crystalline Foam Carbon Allotropes

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xingli Li, Tao Chen, Jiaqi Lin, Jiaxin Jiang, Hongyan Guo, Xiaowei Sheng, Weiyi Wang, Xiaojun Wu, Zhiwen Zhuo, Ning Lu
{"title":"Biphenylene-Based Crystalline Foam Carbon Allotropes","authors":"Xingli Li, Tao Chen, Jiaqi Lin, Jiaxin Jiang, Hongyan Guo, Xiaowei Sheng, Weiyi Wang, Xiaojun Wu, Zhiwen Zhuo, Ning Lu","doi":"10.1021/acsami.4c19266","DOIUrl":null,"url":null,"abstract":"Developing new allotropes with excellent properties and high synthesizability is an intriguing and challenging topic for carbon materials. Based on the experimental biphenylene monolayers, varied three-dimensional crystalline foam carbon allotropes with parallel channels in the structure are theoretically designed. These calculated foam carbon structures are mostly semimetals or semiconductors. The selected representatives possess lattice dynamic stability, high thermal stability, great mechanical performance stability, and feasible synthesizability. Moreover, the selected foam carbon structures exhibit high feasibility in ion filtration, transport, or storage for different ion species. The representative structure (3D-C<sub>48</sub>-Z<sub>2</sub>-R<sub>4</sub>R<sub>4</sub>-R<sub>6</sub>-trans) exhibits a high theoretical lithium storage capacity of 930.6 mAh·g<sup>–1</sup>, low diffusion barriers of only 0.079 eV, suitable open-circuit voltage of 0.905–0.071 V, and relatively small volume change (8.5%). Besides, a nonfoam-limit structure (BPN-diamond) is found to be a direct bandgap semiconductor with a bandgap of 4.073 eV (HSE06), exhibiting ultrahigh hardness (<i>H</i><sub>V</sub> ∼ 76.4 GPa), high carrier mobility (up to 5.97 × 10<sup>3</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>), good optical absorption ability in the UV region, and high synthesizability. These findings suggest that the biphenylene-based foam carbon allotropes are potentially excellent multifunctional materials with applications in flexible and ductile materials, ion electron mixed conductors, ion filtration, and anode materials for Li ion batteries.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"63 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19266","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing new allotropes with excellent properties and high synthesizability is an intriguing and challenging topic for carbon materials. Based on the experimental biphenylene monolayers, varied three-dimensional crystalline foam carbon allotropes with parallel channels in the structure are theoretically designed. These calculated foam carbon structures are mostly semimetals or semiconductors. The selected representatives possess lattice dynamic stability, high thermal stability, great mechanical performance stability, and feasible synthesizability. Moreover, the selected foam carbon structures exhibit high feasibility in ion filtration, transport, or storage for different ion species. The representative structure (3D-C48-Z2-R4R4-R6-trans) exhibits a high theoretical lithium storage capacity of 930.6 mAh·g–1, low diffusion barriers of only 0.079 eV, suitable open-circuit voltage of 0.905–0.071 V, and relatively small volume change (8.5%). Besides, a nonfoam-limit structure (BPN-diamond) is found to be a direct bandgap semiconductor with a bandgap of 4.073 eV (HSE06), exhibiting ultrahigh hardness (HV ∼ 76.4 GPa), high carrier mobility (up to 5.97 × 103 cm2 V–1 s–1), good optical absorption ability in the UV region, and high synthesizability. These findings suggest that the biphenylene-based foam carbon allotropes are potentially excellent multifunctional materials with applications in flexible and ductile materials, ion electron mixed conductors, ion filtration, and anode materials for Li ion batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信