Lean design of a strong and ductile dual-phase titanium–oxygen alloy

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wangwang Ding, Qiying Tao, Chang Liu, Gang Chen, SangHyuk Yoo, Wei Cai, Peng Cao, Baorui Jia, Haoyang Wu, Deyin Zhang, Hongmin Zhu, Lin Zhang, Xuanhui Qu, Jin Zou, Mingli Qin
{"title":"Lean design of a strong and ductile dual-phase titanium–oxygen alloy","authors":"Wangwang Ding, Qiying Tao, Chang Liu, Gang Chen, SangHyuk Yoo, Wei Cai, Peng Cao, Baorui Jia, Haoyang Wu, Deyin Zhang, Hongmin Zhu, Lin Zhang, Xuanhui Qu, Jin Zou, Mingli Qin","doi":"10.1038/s41563-025-02118-9","DOIUrl":null,"url":null,"abstract":"Unalloyed titanium boasts an impressive combination of ductility, biocompatibility and corrosion resistance. However, its strength properties are moderate, which constrains its use in demanding structural applications. Traditional alloying methods used to strengthen titanium often compromise ductility and tend to be costly and energy intensive. Here we present a lean alloy design approach to create a strong and ductile dual-phase titanium–oxygen alloy. By embedding a coherent nanoscale allotropic face-centred cubic titanium phase into the hexagonal close-packed titanium matrix, we significantly enhance strength while preserving substantial ductility. This hexagonal-close-packed/face-centred-cubic dual-phase titanium–oxygen alloy is created by leveraging the tailored oxide-layer thickness of the powders and the rapid cooling inherent in laser-based powder bed fusion. The as-printed Ti–0.67 wt% O alloy exhibits an ultimate tensile strength of 1,119.3 ± 29.2 MPa and a ductility of 23.3 ± 1.9%. Our strategy of incorporating a coherent nanoscale allotropic phase offers a promising pathway to developing high-performance, cost-effective and sustainable lean alloys. A hexagonal-close-packed/face-centred-cubic dual-phase titanium–oxygen alloy is lean designed and fabricated by laser-based powder bed fusion using titanium powders with customized oxide-layer thickness. The as-printed alloy achieves an excellent combination of high strength and ductility.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 4","pages":"506-512"},"PeriodicalIF":37.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-025-02118-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Unalloyed titanium boasts an impressive combination of ductility, biocompatibility and corrosion resistance. However, its strength properties are moderate, which constrains its use in demanding structural applications. Traditional alloying methods used to strengthen titanium often compromise ductility and tend to be costly and energy intensive. Here we present a lean alloy design approach to create a strong and ductile dual-phase titanium–oxygen alloy. By embedding a coherent nanoscale allotropic face-centred cubic titanium phase into the hexagonal close-packed titanium matrix, we significantly enhance strength while preserving substantial ductility. This hexagonal-close-packed/face-centred-cubic dual-phase titanium–oxygen alloy is created by leveraging the tailored oxide-layer thickness of the powders and the rapid cooling inherent in laser-based powder bed fusion. The as-printed Ti–0.67 wt% O alloy exhibits an ultimate tensile strength of 1,119.3 ± 29.2 MPa and a ductility of 23.3 ± 1.9%. Our strategy of incorporating a coherent nanoscale allotropic phase offers a promising pathway to developing high-performance, cost-effective and sustainable lean alloys. A hexagonal-close-packed/face-centred-cubic dual-phase titanium–oxygen alloy is lean designed and fabricated by laser-based powder bed fusion using titanium powders with customized oxide-layer thickness. The as-printed alloy achieves an excellent combination of high strength and ductility.

Abstract Image

Abstract Image

高强度和延展性双相钛氧合金的精益设计
非合金钛拥有令人印象深刻的延展性,生物相容性和耐腐蚀性的组合。然而,它的强度性能适中,这限制了它在要求苛刻的结构应用中的使用。用于强化钛的传统合金化方法往往会损害其延展性,而且往往成本高昂且能源密集。在这里,我们提出了一种精益合金设计方法,以创造一种强而韧性的双相钛氧合金。通过将纳米级同素异形体面心立方钛相嵌入到六边形紧密堆积的钛基体中,我们显著提高了强度,同时保持了大量的延展性。这种六边形密装/面心立方双相钛氧合金是通过利用粉末的量身定制的氧化层厚度和激光粉末床熔合所固有的快速冷却而创建的。Ti-0.67 wt% O合金的抗拉强度为1119.3±29.2 MPa,塑性为23.3±1.9%。我们整合相干纳米同素异相的策略为开发高性能、低成本和可持续的精益合金提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信