Using Machine Learning and Optical Microscopy Image Analysis of Immunosensors Made on Plasmonic Substrates: Application to Detect the SARS-CoV-2 Virus

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Pedro R. A. Oiticica, Monara K. S. C. Angelim, Juliana C. Soares, Andrey C. Soares, José L. Proença-Módena, Odemir M. Bruno, Osvaldo N. Oliveira, Jr.
{"title":"Using Machine Learning and Optical Microscopy Image Analysis of Immunosensors Made on Plasmonic Substrates: Application to Detect the SARS-CoV-2 Virus","authors":"Pedro R. A. Oiticica, Monara K. S. C. Angelim, Juliana C. Soares, Andrey C. Soares, José L. Proença-Módena, Odemir M. Bruno, Osvaldo N. Oliveira, Jr.","doi":"10.1021/acssensors.4c03451","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a diagnostic platform comprising an optical microscopy image analysis system coupled with machine learning. Its efficacy is demonstrated in detecting SARS-CoV-2 virus particles at concentrations as low as 1 PFU (plaque-forming unit) per milliliter by processing images from an immunosensor on a plasmonic substrate. This high performance was achieved by classifying images with the support vector machine (SVM) algorithm and the MobileNetV3_small convolutional neural network (CNN) model, which attained an accuracy of 91.6% and a specificity denoted by an F1 score of 96.9% for the negative class. Notably, this approach enabled the detection of SARS-CoV-2 concentrations 1000 times lower than the limit of detection achieved with localized surface plasmon resonance (LSPR) sensing using the same immunosensors. It is also significant that a binary classification between control and positive classes using the MobileNetV3_small model and the random forest algorithm achieved an accuracy of 96.5% for SARS-CoV-2 concentrations down to 1 PFU/mL. At such low concentrations, straightforward screening of newly infected patients may be feasible. In supporting experiments, we verified that texture was the main contributor to the distinguishability of images taken at different SARS-CoV-2 concentrations, indicating that the combination of ML and image analysis may be applied to any biosensor whose detection mechanism is based on adsorption.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"13 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03451","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a diagnostic platform comprising an optical microscopy image analysis system coupled with machine learning. Its efficacy is demonstrated in detecting SARS-CoV-2 virus particles at concentrations as low as 1 PFU (plaque-forming unit) per milliliter by processing images from an immunosensor on a plasmonic substrate. This high performance was achieved by classifying images with the support vector machine (SVM) algorithm and the MobileNetV3_small convolutional neural network (CNN) model, which attained an accuracy of 91.6% and a specificity denoted by an F1 score of 96.9% for the negative class. Notably, this approach enabled the detection of SARS-CoV-2 concentrations 1000 times lower than the limit of detection achieved with localized surface plasmon resonance (LSPR) sensing using the same immunosensors. It is also significant that a binary classification between control and positive classes using the MobileNetV3_small model and the random forest algorithm achieved an accuracy of 96.5% for SARS-CoV-2 concentrations down to 1 PFU/mL. At such low concentrations, straightforward screening of newly infected patients may be feasible. In supporting experiments, we verified that texture was the main contributor to the distinguishability of images taken at different SARS-CoV-2 concentrations, indicating that the combination of ML and image analysis may be applied to any biosensor whose detection mechanism is based on adsorption.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信