Xiaoli Tian, Wenjun Li, Dr. Fu Li, Mingfeng Cai, Yilong Si, Dr. Hao Tang, Dr. Haifang Li, Prof. Hao Zhang
{"title":"Direct Photopatterning of Zeolitic Imidazolate Frameworks via Photoinduced Fluorination","authors":"Xiaoli Tian, Wenjun Li, Dr. Fu Li, Mingfeng Cai, Yilong Si, Dr. Hao Tang, Dr. Haifang Li, Prof. Hao Zhang","doi":"10.1002/anie.202500476","DOIUrl":null,"url":null,"abstract":"<p>Precise and effective patterning strategies are essential for integrating metal–organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid-state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation-induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High-energy sources (such as X-rays or electron beams) and large irradiation doses – conditions unfavorable for scalable patterning – are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm<sup>−2</sup>, light-sensitive fluorine-containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water-stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4-inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water-responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 18","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202500476","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precise and effective patterning strategies are essential for integrating metal–organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid-state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation-induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High-energy sources (such as X-rays or electron beams) and large irradiation doses – conditions unfavorable for scalable patterning – are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm−2, light-sensitive fluorine-containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water-stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4-inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water-responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.