Direct Photopatterning of Zeolitic Imidazolate Frameworks via Photoinduced Fluorination

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoli Tian, Wenjun Li, Fu Li, Mingfeng Cai, Yilong Si, Hao Tang, Haifang Li, Hao Zhang
{"title":"Direct Photopatterning of Zeolitic Imidazolate Frameworks via Photoinduced Fluorination","authors":"Xiaoli Tian, Wenjun Li, Fu Li, Mingfeng Cai, Yilong Si, Hao Tang, Haifang Li, Hao Zhang","doi":"10.1002/anie.202500476","DOIUrl":null,"url":null,"abstract":"Precise and effective patterning strategies are essential for integrating metal‐organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid‐state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation‐induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High‐energy sources (such as X‐rays or electron beams) and large irradiation doses—conditions unfavorable for scalable patterning—are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm–2, light‐sensitive fluorine‐containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water‐stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4‐inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water‐responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500476","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise and effective patterning strategies are essential for integrating metal‐organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid‐state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation‐induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High‐energy sources (such as X‐rays or electron beams) and large irradiation doses—conditions unfavorable for scalable patterning—are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm–2, light‐sensitive fluorine‐containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water‐stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4‐inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water‐responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信