Maximizing the Accessibility of Acid Sites Within Zeolite Catalysts for Syngas Conversion

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haodi Wang, Feng Jiao, Jingyao Feng, Yinchan Zhang, Zhaochao Xu, Xiulian Pan, Xinhe Bao
{"title":"Maximizing the Accessibility of Acid Sites Within Zeolite Catalysts for Syngas Conversion","authors":"Haodi Wang, Feng Jiao, Jingyao Feng, Yinchan Zhang, Zhaochao Xu, Xiulian Pan, Xinhe Bao","doi":"10.1002/anie.202424946","DOIUrl":null,"url":null,"abstract":"Mass transport within zeolites is pivotal in determining the accessibility of active sites to reactants and hence the catalytic performance. However, there lacks of quantitative guidance for synthesis of desired zeolites with negligible diffusion limitation. Herein, we take mordenite (MOR) zeolite as a model, which is characterized by 12‐membered rings (MR) channels as transport path towards the active sites within the 8MR side pockets for syngas conversion to light olefins. By correlating the effective diffusion lengths (2l) with the Thiele modulus and the effectiveness factors of reaction rates over a composite catalyst ZnAlOx‐MOR, we determine that the shortest 12MR channel length (2L) of 60 nm in this study is close to the threshold length necessary for full access to the 8MR acid sites. As a result, it exhibits excellent catalytic performance with CO conversion reaching 33% and ethylene selectivity 69%. Furthermore, the methodology is general and essential for further development of efficient zeolite catalysts with fully accessible active sites.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"9 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424946","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass transport within zeolites is pivotal in determining the accessibility of active sites to reactants and hence the catalytic performance. However, there lacks of quantitative guidance for synthesis of desired zeolites with negligible diffusion limitation. Herein, we take mordenite (MOR) zeolite as a model, which is characterized by 12‐membered rings (MR) channels as transport path towards the active sites within the 8MR side pockets for syngas conversion to light olefins. By correlating the effective diffusion lengths (2l) with the Thiele modulus and the effectiveness factors of reaction rates over a composite catalyst ZnAlOx‐MOR, we determine that the shortest 12MR channel length (2L) of 60 nm in this study is close to the threshold length necessary for full access to the 8MR acid sites. As a result, it exhibits excellent catalytic performance with CO conversion reaching 33% and ethylene selectivity 69%. Furthermore, the methodology is general and essential for further development of efficient zeolite catalysts with fully accessible active sites.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信