Zhengwu Liu, Jie Mei, Jianshi Tang, Minpeng Xu, Bin Gao, Kun Wang, Sanchuang Ding, Qi Liu, Qi Qin, Weize Chen, Yue Xi, Yijun Li, Peng Yao, Han Zhao, Ngai Wong, He Qian, Bo Hong, Tzyy-Ping Jung, Dong Ming, Huaqiang Wu
{"title":"A memristor-based adaptive neuromorphic decoder for brain–computer interfaces","authors":"Zhengwu Liu, Jie Mei, Jianshi Tang, Minpeng Xu, Bin Gao, Kun Wang, Sanchuang Ding, Qi Liu, Qi Qin, Weize Chen, Yue Xi, Yijun Li, Peng Yao, Han Zhao, Ngai Wong, He Qian, Bo Hong, Tzyy-Ping Jung, Dong Ming, Huaqiang Wu","doi":"10.1038/s41928-025-01340-2","DOIUrl":null,"url":null,"abstract":"<p>Practical brain–computer interfaces should be able to decipher brain signals and dynamically adapt to brain fluctuations. This, however, requires a decoder capable of flexible updates with energy-efficient decoding capabilities. Here we report a neuromorphic and adaptive decoder for brain–computer interfaces, which is based on a 128k-cell memristor chip. Our approach features a hardware-efficient one-step memristor decoding strategy that allows the interface to achieve software-equivalent decoding performance. Furthermore, we show that the system can be used for the real-time control of a drone in four degrees of freedom. We also develop an interactive update framework that allows the memristor decoder and the changing brain signals to adapt to each other. We illustrate the capabilities of this co-evolution of the brain and memristor decoder over an extended interaction task involving ten participants, which leads to around 20% higher accuracy than an interface without co-evolution.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"80 4 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-025-01340-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Practical brain–computer interfaces should be able to decipher brain signals and dynamically adapt to brain fluctuations. This, however, requires a decoder capable of flexible updates with energy-efficient decoding capabilities. Here we report a neuromorphic and adaptive decoder for brain–computer interfaces, which is based on a 128k-cell memristor chip. Our approach features a hardware-efficient one-step memristor decoding strategy that allows the interface to achieve software-equivalent decoding performance. Furthermore, we show that the system can be used for the real-time control of a drone in four degrees of freedom. We also develop an interactive update framework that allows the memristor decoder and the changing brain signals to adapt to each other. We illustrate the capabilities of this co-evolution of the brain and memristor decoder over an extended interaction task involving ten participants, which leads to around 20% higher accuracy than an interface without co-evolution.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.