Functional analysis of cancer-associated germline risk variants

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Laura N. Kellman, Poornima H. Neela, Suhas Srinivasan, Zurab Siprashvili, Ronald L. Shanderson, Audrey W. Hong, Deepti Rao, Douglas F. Porter, David L. Reynolds, Robin M. Meyers, Margaret G. Guo, Xue Yang, Yang Zhao, Glenn G. Wozniak, Laura K. H. Donohue, Rajani Shenoy, Lisa A. Ko, Duy T. Nguyen, Smarajit Mondal, Omar S. Garcia, Lara E. Elcavage, Ibtihal Elfaki, Nathan S. Abell, Shiying Tao, Christopher M. Lopez, Stephen B. Montgomery, Paul A. Khavari
{"title":"Functional analysis of cancer-associated germline risk variants","authors":"Laura N. Kellman, Poornima H. Neela, Suhas Srinivasan, Zurab Siprashvili, Ronald L. Shanderson, Audrey W. Hong, Deepti Rao, Douglas F. Porter, David L. Reynolds, Robin M. Meyers, Margaret G. Guo, Xue Yang, Yang Zhao, Glenn G. Wozniak, Laura K. H. Donohue, Rajani Shenoy, Lisa A. Ko, Duy T. Nguyen, Smarajit Mondal, Omar S. Garcia, Lara E. Elcavage, Ibtihal Elfaki, Nathan S. Abell, Shiying Tao, Christopher M. Lopez, Stephen B. Montgomery, Paul A. Khavari","doi":"10.1038/s41588-024-02070-5","DOIUrl":null,"url":null,"abstract":"<p>Single-nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays of 4,041 SNVs linked to 13 neoplasms comprising &gt;90% of human malignancies were performed in pertinent primary human cell types and then integrated with matching chromatin accessibility, DNA looping and expression quantitative trait loci data to nominate 380 potentially regulatory SNVs and their putative target genes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, DNA damage repair and Rho GTPase activity. A CRISPR knockout screen demonstrated that a subset of germline putative risk genes also enables the growth of established cancers. Editing one SNV, rs10411210, showed that its risk allele increases rhophilin <i>RHPN2</i> expression and stimulus-responsive RhoA activation, indicating that individual SNVs may upregulate cancer-linked pathways. These functional data are a resource for variant prioritization efforts and further interrogation of the mechanisms underlying inherited risk for cancer.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"11 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-02070-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-nucleotide variants (SNVs) in regulatory DNA are linked to inherited cancer risk. Massively parallel reporter assays of 4,041 SNVs linked to 13 neoplasms comprising >90% of human malignancies were performed in pertinent primary human cell types and then integrated with matching chromatin accessibility, DNA looping and expression quantitative trait loci data to nominate 380 potentially regulatory SNVs and their putative target genes. The latter highlighted specific protein networks in lifetime cancer risk, including mitochondrial translation, DNA damage repair and Rho GTPase activity. A CRISPR knockout screen demonstrated that a subset of germline putative risk genes also enables the growth of established cancers. Editing one SNV, rs10411210, showed that its risk allele increases rhophilin RHPN2 expression and stimulus-responsive RhoA activation, indicating that individual SNVs may upregulate cancer-linked pathways. These functional data are a resource for variant prioritization efforts and further interrogation of the mechanisms underlying inherited risk for cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信