Ultra-uniform interfacial matrix via high-temperature thermal shock for long-cycle stability cathodes of sodium-ion batteries†

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zekun Li, Pengfei Huang, Jinfeng Zhang, Zhaoxin Guo, Zhedong Liu, Li Chen, Jingchao Zhang, Jiawei Luo, Xiansen Tao, Zhikai Miao, Haoran Jiang, Chunying Wang, Xinran Ye, Xiaona Wu, Wei-Di Liu, Rui Liu, Yanan Chen and Wenbin Hu
{"title":"Ultra-uniform interfacial matrix via high-temperature thermal shock for long-cycle stability cathodes of sodium-ion batteries†","authors":"Zekun Li, Pengfei Huang, Jinfeng Zhang, Zhaoxin Guo, Zhedong Liu, Li Chen, Jingchao Zhang, Jiawei Luo, Xiansen Tao, Zhikai Miao, Haoran Jiang, Chunying Wang, Xinran Ye, Xiaona Wu, Wei-Di Liu, Rui Liu, Yanan Chen and Wenbin Hu","doi":"10.1039/D5EE00217F","DOIUrl":null,"url":null,"abstract":"<p >NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small> (NFM333) is a promising cobalt-free, high-capacity cathode material for sodium-ion batteries, but suffers from poor cycling stability when prepared by the conventional tube furnace method due to electroactive metal migration, leading to a passive surface layer. To address this challenge, a high-temperature shock (HTS) method was employed. Compared to the tube furnace method, HTS offers a rapid heating process that contributes to a more compact and ultra-uniform NaCaPO<small><sub>4</sub></small> (NCP) coating, leading to enhanced structural integrity and coating quality. The HTS method first enables the formation of a compact and ultra-uniform NCP coating, which prevents nickel migration more effectively compared to tube furnace-prepared NFM333 (Tu-NFM333). By preventing nickel migration, the surface residual alkalinity is reduced, enhancing air stability and improving electrochemical performance. As a result, HTS-treated NFM333 demonstrated 80% capacity retention after 1000 cycles at a 1C rate, while a pouch cell retained 70% capacity after 700 cycles. The stabilization of NFM333 through HTS highlights a promising approach for developing durable sodium-ion batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 6","pages":" 2962-2972"},"PeriodicalIF":30.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee00217f","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

NaNi1/3Fe1/3Mn1/3O2 (NFM333) is a promising cobalt-free, high-capacity cathode material for sodium-ion batteries, but suffers from poor cycling stability when prepared by the conventional tube furnace method due to electroactive metal migration, leading to a passive surface layer. To address this challenge, a high-temperature shock (HTS) method was employed. Compared to the tube furnace method, HTS offers a rapid heating process that contributes to a more compact and ultra-uniform NaCaPO4 (NCP) coating, leading to enhanced structural integrity and coating quality. The HTS method first enables the formation of a compact and ultra-uniform NCP coating, which prevents nickel migration more effectively compared to tube furnace-prepared NFM333 (Tu-NFM333). By preventing nickel migration, the surface residual alkalinity is reduced, enhancing air stability and improving electrochemical performance. As a result, HTS-treated NFM333 demonstrated 80% capacity retention after 1000 cycles at a 1C rate, while a pouch cell retained 70% capacity after 700 cycles. The stabilization of NFM333 through HTS highlights a promising approach for developing durable sodium-ion batteries.

Abstract Image

Abstract Image

钠离子电池长周期稳定阴极的高温热冲击超均匀界面基质
NaNi1/3Fe1/3Mn1/3O2 (NFM333)是一种很有前途的无钴高容量钠离子电池正极材料,但由于电活性金属迁移,传统管炉法制备时循环稳定性差,导致面层钝化。为了解决这一问题,采用了高温冲击(HTS)方法。与管式炉方法相比,HTS提供了一个快速的加热过程,有助于形成更紧凑和超均匀的NaCaPO4 (NCP)涂层,从而提高结构完整性和涂层质量。HTS方法首先能够形成致密且超均匀的NCP涂层,与管式炉制备的NFM333 (Tu-NFM333)相比,可以更有效地防止镍迁移。通过阻止镍的迁移,降低了表面残余碱度,增强了空气稳定性,提高了电化学性能。结果表明,经过高温加热处理的NFM333在1C倍率下循环1000次后容量保留率为80%,而袋状电池在循环700次后容量保留率为70%。通过高温超导技术稳定NFM333凸显了开发耐用钠离子电池的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信