Imaging Clusters of Pediatric Low-Grade Glioma are Associated with Distinct Molecular Characteristics.

Anahita Fathi Kazerooni, Adam Kraya, Komal S Rathi, Meen Chul Kim, Varun Kesherwani, Ryan Corbett, Arastoo Vossough, Nastaran Khalili, Deep Gandhi, Neda Khalili Ariana M Familiar, Run Jin, Xiaoyan Huang, Yuankun Zhu, Alex Sickler, Matthew R Lueder, Saksham Phul, Phillip B Storm, Jeffrey B Ware, Jessica B Foster, Sabine Mueller, Jo Lynne Rokita, Michael J Fisher, Adam C Resnick, Ali Nabavizadeh
{"title":"Imaging Clusters of Pediatric Low-Grade Glioma are Associated with Distinct Molecular Characteristics.","authors":"Anahita Fathi Kazerooni, Adam Kraya, Komal S Rathi, Meen Chul Kim, Varun Kesherwani, Ryan Corbett, Arastoo Vossough, Nastaran Khalili, Deep Gandhi, Neda Khalili Ariana M Familiar, Run Jin, Xiaoyan Huang, Yuankun Zhu, Alex Sickler, Matthew R Lueder, Saksham Phul, Phillip B Storm, Jeffrey B Ware, Jessica B Foster, Sabine Mueller, Jo Lynne Rokita, Michael J Fisher, Adam C Resnick, Ali Nabavizadeh","doi":"10.3174/ajnr.A8699","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Cancers show heterogeneity at various levels, from genome to radiological imaging. This study aimed to explore the interplay between genomic, transcriptomic, and radiophenotypic data in pediatric low-grade glioma (pLGG), the most common group of brain tumors in children.</p><p><strong>Materials and methods: </strong>We analyzed data from 201 pLGG patients in the Children's Brain Tumor Network (CBTN), using principal component analysis and K-Means clustering on 881 radiomic features, along with clinical variables (age, sex, tumor location), to identify imaging clusters and examine their association with 2021 WHO pLGG classifications. To determine the transcriptome pathways linked to imaging clusters, we employed a supervised machine learning model with elastic net logistic regression based on the pathways identified through gene set enrichment and gene co-expression network analyses.</p><p><strong>Results: </strong>Three imaging clusters with distinct radiomic characteristics were identified. <i>BRAF V600E</i> mutations were primarily found in imaging cluster 3, while <i>KIAA1549::BRAF</i> fusion occurred in subtype 1. The model's predictive accuracy (AUC) was 0.77 for subtype 1, 0.78 for subtype 2, and 0.70 for subtype 3. Each imaging cluster exhibited unique molecular mechanisms: subtype 1 was linked to oxidative phosphorylation, <i>PDGFRB</i>, and interleukin signaling, whereas subtype 3 was associated with histone acetylation and DNA methylation pathways, related to <i>BRAF V600E</i> pLGGs.</p><p><strong>Conclusions: </strong>Our radiogenomics study indicates that the intrinsic molecular characteristics of tumors correlate with distinct imaging subgroups in pLGG, paving the way for future multi-modal investigations that may enhance understanding of disease progression and targetability.</p><p><strong>Abbreviations: </strong>WHO = World Health Organization; CBTN = Children's Brain Tumor Network; pLGG = pediatric Low-Grade Glioma; EFS = Event-Free Survival; PC = Principal Component; CNS = Central Nervous System.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Cancers show heterogeneity at various levels, from genome to radiological imaging. This study aimed to explore the interplay between genomic, transcriptomic, and radiophenotypic data in pediatric low-grade glioma (pLGG), the most common group of brain tumors in children.

Materials and methods: We analyzed data from 201 pLGG patients in the Children's Brain Tumor Network (CBTN), using principal component analysis and K-Means clustering on 881 radiomic features, along with clinical variables (age, sex, tumor location), to identify imaging clusters and examine their association with 2021 WHO pLGG classifications. To determine the transcriptome pathways linked to imaging clusters, we employed a supervised machine learning model with elastic net logistic regression based on the pathways identified through gene set enrichment and gene co-expression network analyses.

Results: Three imaging clusters with distinct radiomic characteristics were identified. BRAF V600E mutations were primarily found in imaging cluster 3, while KIAA1549::BRAF fusion occurred in subtype 1. The model's predictive accuracy (AUC) was 0.77 for subtype 1, 0.78 for subtype 2, and 0.70 for subtype 3. Each imaging cluster exhibited unique molecular mechanisms: subtype 1 was linked to oxidative phosphorylation, PDGFRB, and interleukin signaling, whereas subtype 3 was associated with histone acetylation and DNA methylation pathways, related to BRAF V600E pLGGs.

Conclusions: Our radiogenomics study indicates that the intrinsic molecular characteristics of tumors correlate with distinct imaging subgroups in pLGG, paving the way for future multi-modal investigations that may enhance understanding of disease progression and targetability.

Abbreviations: WHO = World Health Organization; CBTN = Children's Brain Tumor Network; pLGG = pediatric Low-Grade Glioma; EFS = Event-Free Survival; PC = Principal Component; CNS = Central Nervous System.

儿童低级别胶质瘤的影像学集群与不同的分子特征相关。
背景和目的:从基因组到放射影像学,癌症在不同水平上表现出异质性。本研究旨在探讨儿童低级别胶质瘤(pLGG)的基因组、转录组学和放射表型数据之间的相互作用,pLGG是儿童中最常见的脑肿瘤。材料和方法:我们分析了儿童脑肿瘤网络(CBTN)中201名pLGG患者的数据,使用主成分分析和K-Means聚类对881个放射学特征以及临床变量(年龄、性别、肿瘤位置)进行聚类,以确定成像聚类并检查其与2021年WHO pLGG分类的关系。为了确定与成像簇相关的转录组通路,我们采用了一种有监督的机器学习模型,该模型基于通过基因集富集和基因共表达网络分析确定的通路,具有弹性网络逻辑回归。结果:确定了三个具有不同放射学特征的影像学团簇。BRAF V600E突变主要出现在成像簇3中,KIAA1549::BRAF融合发生在亚型1中。该模型对亚型1、亚型2和亚型3的预测精度(AUC)分别为0.77、0.78和0.70。每个成像簇都表现出独特的分子机制:亚型1与氧化磷酸化、PDGFRB和白细胞介素信号通路相关,而亚型3与组蛋白乙酰化和DNA甲基化途径相关,与BRAF V600E pLGGs相关。结论:我们的放射基因组学研究表明,肿瘤的内在分子特征与pLGG的不同成像亚群相关,为未来的多模式研究铺平了道路,这些研究可能会增强对疾病进展和靶向性的理解。缩写:WHO =世界卫生组织;儿童脑肿瘤网络;pLGG =小儿低级别胶质瘤;EFS =无事件生存期;主成分;CNS =中枢神经系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信