Extracellular matrix ligands modulate the endothelial progenitor cell secretome for enhanced angiogenesis

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Vanessa F.C. Dartora , Randy Carney , Aijun Wang , Peng Qiu , Alyssa Panitch
{"title":"Extracellular matrix ligands modulate the endothelial progenitor cell secretome for enhanced angiogenesis","authors":"Vanessa F.C. Dartora ,&nbsp;Randy Carney ,&nbsp;Aijun Wang ,&nbsp;Peng Qiu ,&nbsp;Alyssa Panitch","doi":"10.1016/j.actbio.2025.02.028","DOIUrl":null,"url":null,"abstract":"<div><div>Wound healing is a complex physiological process fundamentally dependent on angiogenesis for effective tissue repair. Endothelial progenitor cells (EPCs) have shown significant potential in promoting angiogenesis, primarily through their secretome, rich in proteins and extracellular vesicles (EVs) essential for cell signaling and tissue regeneration. This study investigates the effect of a collagen-bound proteoglycan mimetic (LXW7-DS-SILY or LDS), that binds to the αvβ3 integrin receptor, on the EPC secretome, with a dual focus on the proteomic content and the functional properties of EVs. Utilizing high-resolution two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) alongside bioinformatic analysis, we identified significant alterations in protein expression profiles, particularly in angiogenesis and wound healing pathways. The functional impact of these changes was validated through biological assays, where the whole secretome and the EV fraction from EPCs seeded on collagen-bound LDS markedly enhanced vascular network formation, driven by the increase of growth factors and angiogenic regulators such as FGFR1, NRP1, and ANGPT2 within the EV fraction. Gene Ontology (GO) enrichment analysis further highlighted the enrichment of proteins within the EVs driving biological processes, including 'response to wounding' and 'positive regulation of cell motility'. These results underscore that LDS modulates the EPC secretome and significantly enhances its angiogenic potential, offering a promising therapeutic strategy for non-healing and ischemic wounds and suggesting that biomaterials can be modified to control the EV secretome to enhance tissue repair. Functional assays validating the omics data highlight the robustness of LDS as a targeted therapeutic for enhancing angiogenesis and tissue repair in clinical settings. Moreover, the pivotal role of EVs in mediating pro-angiogenic effects offers insights into developing biomaterial therapies that exploit key regulators within the EPC secretome for wound healing.</div></div><div><h3>Statement of significance</h3><div>This manuscript explores how a proteoglycan mimetic that binds to both collagen and the α<sub>v</sub>β<sub>3</sub> integrin receptor affects the proteome component of the secretome from endothelial progenitor cells (EPCs). It presents functional biological data, analytical data, and proteomic analysis of the soluble and extracellular vesical (EV) components of the secratome. The proteomic data maps to the observed enhanced angiogenic potential of the EVs. These results suggest that by controlling the cellular environment and judicially engineering how cells interact with a biomaterial can influence the proteomic composition of EVs to enhance tissue regeneration. This is the foundation of future work aimed at engineering biomaterial cell systems to influence the proteomic component of EVs for therapeutic use.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 240-255"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125001126","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing is a complex physiological process fundamentally dependent on angiogenesis for effective tissue repair. Endothelial progenitor cells (EPCs) have shown significant potential in promoting angiogenesis, primarily through their secretome, rich in proteins and extracellular vesicles (EVs) essential for cell signaling and tissue regeneration. This study investigates the effect of a collagen-bound proteoglycan mimetic (LXW7-DS-SILY or LDS), that binds to the αvβ3 integrin receptor, on the EPC secretome, with a dual focus on the proteomic content and the functional properties of EVs. Utilizing high-resolution two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) alongside bioinformatic analysis, we identified significant alterations in protein expression profiles, particularly in angiogenesis and wound healing pathways. The functional impact of these changes was validated through biological assays, where the whole secretome and the EV fraction from EPCs seeded on collagen-bound LDS markedly enhanced vascular network formation, driven by the increase of growth factors and angiogenic regulators such as FGFR1, NRP1, and ANGPT2 within the EV fraction. Gene Ontology (GO) enrichment analysis further highlighted the enrichment of proteins within the EVs driving biological processes, including 'response to wounding' and 'positive regulation of cell motility'. These results underscore that LDS modulates the EPC secretome and significantly enhances its angiogenic potential, offering a promising therapeutic strategy for non-healing and ischemic wounds and suggesting that biomaterials can be modified to control the EV secretome to enhance tissue repair. Functional assays validating the omics data highlight the robustness of LDS as a targeted therapeutic for enhancing angiogenesis and tissue repair in clinical settings. Moreover, the pivotal role of EVs in mediating pro-angiogenic effects offers insights into developing biomaterial therapies that exploit key regulators within the EPC secretome for wound healing.

Statement of significance

This manuscript explores how a proteoglycan mimetic that binds to both collagen and the αvβ3 integrin receptor affects the proteome component of the secretome from endothelial progenitor cells (EPCs). It presents functional biological data, analytical data, and proteomic analysis of the soluble and extracellular vesical (EV) components of the secratome. The proteomic data maps to the observed enhanced angiogenic potential of the EVs. These results suggest that by controlling the cellular environment and judicially engineering how cells interact with a biomaterial can influence the proteomic composition of EVs to enhance tissue regeneration. This is the foundation of future work aimed at engineering biomaterial cell systems to influence the proteomic component of EVs for therapeutic use.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信