Comparative phylogenetic and sequence identity analysis of internal transcribed spacer 2 and cytochrome c oxidase subunit I as DNA barcode markers for the most common equine Strongylidae species
Irina Diekmann , Jürgen Krücken , Tetiana A. Kuzmina , Christina M. Bredtmann , Mariana Louro , Vitaliy A. Kharchenko , Thomas Tzelos , Jacqueline B. Matthews , Luís M. Madeira de Carvalho , Georg von Samson-Himmelstjerna
{"title":"Comparative phylogenetic and sequence identity analysis of internal transcribed spacer 2 and cytochrome c oxidase subunit I as DNA barcode markers for the most common equine Strongylidae species","authors":"Irina Diekmann , Jürgen Krücken , Tetiana A. Kuzmina , Christina M. Bredtmann , Mariana Louro , Vitaliy A. Kharchenko , Thomas Tzelos , Jacqueline B. Matthews , Luís M. Madeira de Carvalho , Georg von Samson-Himmelstjerna","doi":"10.1016/j.meegid.2025.105729","DOIUrl":null,"url":null,"abstract":"<div><div>Morphologically, 64 strongylid species have been described in equines. Co-infections are common, with up to 29 species reported in a single horse. Morphological identification of these species is time consuming and requires expert knowledge due to their similar appearance. Therefore, non-invasive identification methods are needed. DNA barcoding offers a rapid and reliable tool for species identification and the discovery of cryptic species for these most common parasitic nematodes of equines. In total, 269 cytochrome <em>c</em> oxidase subunit I (COI) gene and 312 internal transcribed spacer 2 (ITS-2) sequences from 27 equine Strongylidae species, including sequences from two uncharacterised species, <em>Coronocyclus sagittatus</em> and <em>Triodontophorus tenuicollis</em>, were generated and combined with COI and ITS-2 sequences data from six Cyathostominae species from previous studies. This study represents a comprehensive DNA barcoding analysis of 22 Cyathostominae and six Strongylinae species using mitochondrial COI gene and ITS-2 sequences. Maximum likelihood phylogenetic trees were constructed and the intra- and interspecific genetic distances for both markers were compared. Analysis revealed complex phylogenetic relationships. Para- and polyphyletic relationships were observed among most genera within Strongylinae and Cyathostominae. This challenges current morphological classifications. Although both markers showed overlapping pairwise identities in intra- and inter-species comparisons, COI had higher discriminatory power than ITS-2. Expanding the COI and ITS-2 reference database, including the first sequences for <em>Coronocyclus sagittatus</em> and <em>Triodontophorus tenuicollis,</em> improve a reliable species identification and advanced studies on Strongylinae and Cyathostominae diversity using barcoding and metabarcoding.</div></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"129 ","pages":"Article 105729"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134825000188","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Morphologically, 64 strongylid species have been described in equines. Co-infections are common, with up to 29 species reported in a single horse. Morphological identification of these species is time consuming and requires expert knowledge due to their similar appearance. Therefore, non-invasive identification methods are needed. DNA barcoding offers a rapid and reliable tool for species identification and the discovery of cryptic species for these most common parasitic nematodes of equines. In total, 269 cytochrome c oxidase subunit I (COI) gene and 312 internal transcribed spacer 2 (ITS-2) sequences from 27 equine Strongylidae species, including sequences from two uncharacterised species, Coronocyclus sagittatus and Triodontophorus tenuicollis, were generated and combined with COI and ITS-2 sequences data from six Cyathostominae species from previous studies. This study represents a comprehensive DNA barcoding analysis of 22 Cyathostominae and six Strongylinae species using mitochondrial COI gene and ITS-2 sequences. Maximum likelihood phylogenetic trees were constructed and the intra- and interspecific genetic distances for both markers were compared. Analysis revealed complex phylogenetic relationships. Para- and polyphyletic relationships were observed among most genera within Strongylinae and Cyathostominae. This challenges current morphological classifications. Although both markers showed overlapping pairwise identities in intra- and inter-species comparisons, COI had higher discriminatory power than ITS-2. Expanding the COI and ITS-2 reference database, including the first sequences for Coronocyclus sagittatus and Triodontophorus tenuicollis, improve a reliable species identification and advanced studies on Strongylinae and Cyathostominae diversity using barcoding and metabarcoding.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .