KRN7000 analogues as biofilm disrupting agents against Streptococcus pyogenes and Proteus mirabilis

IF 2.1 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
K. A. Krishnakumar, R. Remya Babu, Shiburaj Sugathan, Ravi S. Lankalapalli
{"title":"KRN7000 analogues as biofilm disrupting agents against Streptococcus pyogenes and Proteus mirabilis","authors":"K. A. Krishnakumar, R. Remya Babu, Shiburaj Sugathan, Ravi S. Lankalapalli","doi":"10.1038/s41429-025-00810-1","DOIUrl":null,"url":null,"abstract":"In this study, three KRN7000 analogues with variations in the sugar and glycosidic linkage were synthesised to assess their efficacy in disrupting the biofilms of S. pyogenes and P. mirabilis. All three analogues exhibited antibacterial activity, with the effects being more prominent at lower concentrations in S. pyogenes. The N-alkylated, 1-deoxy analogue emerged as the most effective, significantly reducing biofilm formation and extracellular polymeric substances (EPS) in both organisms. Microscopic analysis revealed notable disruption of biofilm structure by the analogue, resulting in a significant reduction in EPS for both organisms and decreasing cell surface hydrophobicity. These results position the KRN7000 analogue as a promising candidate for developing glycolipid-based antibiofilm agents.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"78 4","pages":"246-255"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41429-025-00810-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-025-00810-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, three KRN7000 analogues with variations in the sugar and glycosidic linkage were synthesised to assess their efficacy in disrupting the biofilms of S. pyogenes and P. mirabilis. All three analogues exhibited antibacterial activity, with the effects being more prominent at lower concentrations in S. pyogenes. The N-alkylated, 1-deoxy analogue emerged as the most effective, significantly reducing biofilm formation and extracellular polymeric substances (EPS) in both organisms. Microscopic analysis revealed notable disruption of biofilm structure by the analogue, resulting in a significant reduction in EPS for both organisms and decreasing cell surface hydrophobicity. These results position the KRN7000 analogue as a promising candidate for developing glycolipid-based antibiofilm agents.

Abstract Image

KRN7000类似物对化脓性链球菌和奇异变形杆菌的生物膜破坏作用。
在这项研究中,合成了三种糖和糖苷键变化的KRN7000类似物,以评估它们破坏化脓链球菌和神奇链球菌生物膜的功效。三种类似物均表现出抑菌活性,且浓度越低,抑菌效果越明显。n -烷基化,1-脱氧类似物是最有效的,显著减少生物膜的形成和细胞外聚合物(EPS)。显微镜分析显示,类似物明显破坏了生物膜结构,导致两种生物的EPS显著减少,细胞表面疏水性降低。这些结果将KRN7000类似物定位为开发基于糖脂的抗生素膜剂的有希望的候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Antibiotics
Journal of Antibiotics 医学-免疫学
CiteScore
6.60
自引率
3.00%
发文量
87
审稿时长
1 months
期刊介绍: The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Discovery of new antibiotics and related types of biologically active substances Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信