Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters.

IF 1.9 4区 心理学 Q3 BEHAVIORAL SCIENCES
Irem Denizli, Ana Monteiro, Kathryn R Elmer, Tyler J Stevenson
{"title":"Photoperiod-driven testicular DNA methylation in gonadotropin and sex steroid receptor promoters in Siberian hamsters.","authors":"Irem Denizli, Ana Monteiro, Kathryn R Elmer, Tyler J Stevenson","doi":"10.1007/s00359-025-01733-w","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal cycles in breeding, often orchestrated by annual changes in photoperiod, are common in nature. Here, we studied how change in photoperiod affects DNA methylation in the testes of a highly seasonal breeder: the Siberian hamster (Phodopus sungorus). We hypothesized that DNA methylation in promoter regions associated with key reproductive genes such as follicle-stimulating hormone receptor in the testes is linked to breeding and non-breeding states. Using Oxford Nanopore sequencing, we identified more than 10 million (10,151,742) differentially methylated cytosine-guanine (CpG) sites in the genome between breeding long photoperiod and non-breeding short photoperiod conditions. ShinyGo enrichment analyses identified biological pathways consisting of reproductive system, hormone-mediated signalling and gonad development. We found that short photoperiod induced DNA methylation in the promoter regions for androgen receptor (Ar), estrogen receptors (Esr1, Esr2), kisspeptin1 receptor (kiss1r) and follicle-stimulating hormone receptor (Fshr). Long photoperiods were observed to have higher DNA methylation in promoters for basic helix-loop-helix ARNT-like 1 (Bmal1), progesterone receptor (Pgr) and thyroid-stimulating hormone receptor (Tshr). Our findings provide insights into the epigenetic mechanisms underlying seasonal adaptations in timing reproduction in Siberian hamsters and could be informative for understanding male fertility and reproductive disorders in mammals.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-025-01733-w","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seasonal cycles in breeding, often orchestrated by annual changes in photoperiod, are common in nature. Here, we studied how change in photoperiod affects DNA methylation in the testes of a highly seasonal breeder: the Siberian hamster (Phodopus sungorus). We hypothesized that DNA methylation in promoter regions associated with key reproductive genes such as follicle-stimulating hormone receptor in the testes is linked to breeding and non-breeding states. Using Oxford Nanopore sequencing, we identified more than 10 million (10,151,742) differentially methylated cytosine-guanine (CpG) sites in the genome between breeding long photoperiod and non-breeding short photoperiod conditions. ShinyGo enrichment analyses identified biological pathways consisting of reproductive system, hormone-mediated signalling and gonad development. We found that short photoperiod induced DNA methylation in the promoter regions for androgen receptor (Ar), estrogen receptors (Esr1, Esr2), kisspeptin1 receptor (kiss1r) and follicle-stimulating hormone receptor (Fshr). Long photoperiods were observed to have higher DNA methylation in promoters for basic helix-loop-helix ARNT-like 1 (Bmal1), progesterone receptor (Pgr) and thyroid-stimulating hormone receptor (Tshr). Our findings provide insights into the epigenetic mechanisms underlying seasonal adaptations in timing reproduction in Siberian hamsters and could be informative for understanding male fertility and reproductive disorders in mammals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
14.30%
发文量
67
审稿时长
1 months
期刊介绍: The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields: - Neurobiology and neuroethology - Sensory physiology and ecology - Physiological and hormonal basis of behavior - Communication, orientation, and locomotion - Functional imaging and neuroanatomy Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular. Colour figures are free in print and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信