Out of this World: Wound Healing on Earth and in Space.

Nathan C Balukoff, Garrett Houk, Tammy Gonzalez, Yael Berton, Vincent Ronfard, Irena Pastar, Marjana Tomic-Canic
{"title":"Out of this World: Wound Healing on Earth and in Space.","authors":"Nathan C Balukoff, Garrett Houk, Tammy Gonzalez, Yael Berton, Vincent Ronfard, Irena Pastar, Marjana Tomic-Canic","doi":"10.1016/j.jid.2024.12.024","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired wound healing is a significant concern for humans in space, where the unique microgravity environment poses challenges to the natural healing processes of the body. Similar to chronic wounds on earth, such as diabetic foot ulcers and venous leg ulcers, wounds inflicted in space exhibit delayed or impaired healing responses. These wounds share common features, including dysregulated cellular signaling, altered cytokine profiles, and impaired tissue regeneration. Little is known about the mechanisms underlying wound healing under microgravity. In this review, we focused on exploring the parallels between wound healing in space and chronic wounds on earth as a fundamental approach for developing effective countermeasures to promote healing and mitigate associated health risks during long-space missions.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2024.12.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Impaired wound healing is a significant concern for humans in space, where the unique microgravity environment poses challenges to the natural healing processes of the body. Similar to chronic wounds on earth, such as diabetic foot ulcers and venous leg ulcers, wounds inflicted in space exhibit delayed or impaired healing responses. These wounds share common features, including dysregulated cellular signaling, altered cytokine profiles, and impaired tissue regeneration. Little is known about the mechanisms underlying wound healing under microgravity. In this review, we focused on exploring the parallels between wound healing in space and chronic wounds on earth as a fundamental approach for developing effective countermeasures to promote healing and mitigate associated health risks during long-space missions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信