Synthesis and characterization of berberine-loaded nanoliposome for targeting of MAPK pathway to induce apoptosis and suppression of autophagy in glioblastoma.

Min Xi, Somayeh Hasani Kia, Hangyu Shi, Xinya Dong, Yongqiang Shi, Luyi Zhang, Bin Jiang
{"title":"Synthesis and characterization of berberine-loaded nanoliposome for targeting of MAPK pathway to induce apoptosis and suppression of autophagy in glioblastoma.","authors":"Min Xi, Somayeh Hasani Kia, Hangyu Shi, Xinya Dong, Yongqiang Shi, Luyi Zhang, Bin Jiang","doi":"10.1088/1748-605X/adb673","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM), the most aggressive and lethal primary brain tumor, demands innovative therapeutic strategies to improve patient outcomes and quality of life. Addressing this urgent need, our study focuses on developing a berberine (BBR)-loaded nanoliposome (NL) as a targeted drug delivery system to combat GBM. Synthesized using the thin film hydration method and characterized through advanced physical and spectroscopic techniques, these NLs demonstrate promising potential in enhancing BBR's therapeutic efficacy. The NL formulation achieved an impressive loading efficiency of 65.71 ± 1.31% with a particle size of 83 ± 12 nm, ensuring optimal delivery. Sustained release experiments revealed that 82.65 ± 1.75% of the encapsulated BBR was consistently released over 48 h, highlighting its controlled release capabilities.<i>In vitro</i>assays, including cell viability, TUNEL, and western blot analysis, confirmed the potent anti-cancer effects of NL-BBR. The formulation significantly disrupted the metabolism of U-87 glioblastoma cells, inducing enhanced autophagy and apoptosis, ultimately leading to cell death via intrinsic apoptotic pathways. Additionally, western blot results demonstrated that NL-BBR effectively suppressed the mitogen-activated protein kinase signaling pathway, a critical driver of GBM progression. This study underscores the transformative potential of incorporating BBR into NLs, which not only enhances its solubility and bioavailability but also significantly amplifies its therapeutic impact. These findings pave the way for advanced nano-based interventions in GBM treatment, offering a glimmer of hope for improved outcomes in this challenging cancer landscape.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adb673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM), the most aggressive and lethal primary brain tumor, demands innovative therapeutic strategies to improve patient outcomes and quality of life. Addressing this urgent need, our study focuses on developing a berberine (BBR)-loaded nanoliposome (NL) as a targeted drug delivery system to combat GBM. Synthesized using the thin film hydration method and characterized through advanced physical and spectroscopic techniques, these NLs demonstrate promising potential in enhancing BBR's therapeutic efficacy. The NL formulation achieved an impressive loading efficiency of 65.71 ± 1.31% with a particle size of 83 ± 12 nm, ensuring optimal delivery. Sustained release experiments revealed that 82.65 ± 1.75% of the encapsulated BBR was consistently released over 48 h, highlighting its controlled release capabilities.In vitroassays, including cell viability, TUNEL, and western blot analysis, confirmed the potent anti-cancer effects of NL-BBR. The formulation significantly disrupted the metabolism of U-87 glioblastoma cells, inducing enhanced autophagy and apoptosis, ultimately leading to cell death via intrinsic apoptotic pathways. Additionally, western blot results demonstrated that NL-BBR effectively suppressed the mitogen-activated protein kinase signaling pathway, a critical driver of GBM progression. This study underscores the transformative potential of incorporating BBR into NLs, which not only enhances its solubility and bioavailability but also significantly amplifies its therapeutic impact. These findings pave the way for advanced nano-based interventions in GBM treatment, offering a glimmer of hope for improved outcomes in this challenging cancer landscape.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信