Measurement of gas exchange surface area from DLNO and DLCO

IF 1.9 4区 医学 Q3 PHYSIOLOGY
Colin Borland
{"title":"Measurement of gas exchange surface area from DLNO and DLCO","authors":"Colin Borland","doi":"10.1016/j.resp.2025.104403","DOIUrl":null,"url":null,"abstract":"<div><div>The estimated diffusion coefficients for nitric oxide and carbon monoxide in human plasma and red cells can be inserted into the equations for Fick’s 1st and 2nd laws. The surface area of the alveolar membrane and exposed red cells can then be calculated from D<sub>LNO</sub> and D<sub>LCO</sub> (in hyperoxia). This yields a value of 18.7 m<sup>2</sup> for alveolar capillary membrane via D<sub>LNO</sub>, 19.6 m<sup>2</sup> for red cell surface area via D<sub>LCO</sub> in a seated human at rest and = 2.03m<sup>2</sup> for a membrane oxygenator. The values for a seated human are substantially less than morphometric values. This is likely due to a considerable functional reserve in the lung.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"335 ","pages":"Article 104403"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482500014X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The estimated diffusion coefficients for nitric oxide and carbon monoxide in human plasma and red cells can be inserted into the equations for Fick’s 1st and 2nd laws. The surface area of the alveolar membrane and exposed red cells can then be calculated from DLNO and DLCO (in hyperoxia). This yields a value of 18.7 m2 for alveolar capillary membrane via DLNO, 19.6 m2 for red cell surface area via DLCO in a seated human at rest and = 2.03m2 for a membrane oxygenator. The values for a seated human are substantially less than morphometric values. This is likely due to a considerable functional reserve in the lung.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信