Mitigating Oxidative Browning in Litchi by Regulating Biochemical Markers and Targeted Gene expression via Exogenous Nitric Oxide.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Khushboo Azam, Hidayatullah Mir, Mohammed Wasim Siddiqui, Tushar Ranjan, Fozia Homa, Nusrat Perveen, Duniya Ram Singh, Manzer H Siddiqui
{"title":"Mitigating Oxidative Browning in Litchi by Regulating Biochemical Markers and Targeted Gene expression via Exogenous Nitric Oxide.","authors":"Khushboo Azam, Hidayatullah Mir, Mohammed Wasim Siddiqui, Tushar Ranjan, Fozia Homa, Nusrat Perveen, Duniya Ram Singh, Manzer H Siddiqui","doi":"10.1111/ppl.70107","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide has been shown to influence oxidative metabolism in plants, enhancing their resilience to various biotic and abiotic stresses. Post-harvest oxidative stress is a key factor leading to quality deterioration in litchi (Litchi chinensis Sonn.) fruit, with visible symptoms that significantly reduce shelf life and consumer acceptability. Therefore, the effect of exogenous sodium nitroprusside (SNP; 1.0 mM and 2.0 mM) on litchi (cv. Purbi) fruit was examined during storage at 7 ± 1°C. Different biochemical changes related to post-harvest quality and pericarp browning of litchi were evaluated. The results suggested that SNP (2.0 mM) was significantly effective in reducing weight loss, the pericarp browning index and decay loss. The fruit subjected to SNP (2.0 mM) treatment retained more total anthocyanins and total phenolic content with reduced peroxidase and polyphenol oxidase enzyme activity. Other quality attributes, such as total soluble solids (TSS), titratable acidity and ascorbic acid, were also recorded to be greater in the SNP (2.0 mM)-treated fruits. These results were consistent with the expression profiles of LcPPO, LcPOD and Laccase genes. The expression levels of these genes were highly suppressed in the nitric oxide-treated fruits compared to those in the control fruits. Therefore, SNP (2.0 mM) treatment could reduce litchi pericarp browning and prolong the post-harvest life of fruit for up to eighteen days during cold storage.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70107"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70107","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitric oxide has been shown to influence oxidative metabolism in plants, enhancing their resilience to various biotic and abiotic stresses. Post-harvest oxidative stress is a key factor leading to quality deterioration in litchi (Litchi chinensis Sonn.) fruit, with visible symptoms that significantly reduce shelf life and consumer acceptability. Therefore, the effect of exogenous sodium nitroprusside (SNP; 1.0 mM and 2.0 mM) on litchi (cv. Purbi) fruit was examined during storage at 7 ± 1°C. Different biochemical changes related to post-harvest quality and pericarp browning of litchi were evaluated. The results suggested that SNP (2.0 mM) was significantly effective in reducing weight loss, the pericarp browning index and decay loss. The fruit subjected to SNP (2.0 mM) treatment retained more total anthocyanins and total phenolic content with reduced peroxidase and polyphenol oxidase enzyme activity. Other quality attributes, such as total soluble solids (TSS), titratable acidity and ascorbic acid, were also recorded to be greater in the SNP (2.0 mM)-treated fruits. These results were consistent with the expression profiles of LcPPO, LcPOD and Laccase genes. The expression levels of these genes were highly suppressed in the nitric oxide-treated fruits compared to those in the control fruits. Therefore, SNP (2.0 mM) treatment could reduce litchi pericarp browning and prolong the post-harvest life of fruit for up to eighteen days during cold storage.

通过外源一氧化氮调节生化标记物和靶向基因表达减轻荔枝氧化褐变。
一氧化氮已被证明影响植物的氧化代谢,增强其对各种生物和非生物胁迫的恢复能力。收获后氧化应激是导致荔枝(litchi chinensis Sonn.)果实质量恶化的关键因素,其明显症状会显著降低保质期和消费者的接受度。因此,外源性硝普钠(SNP;1.0 mM和2.0 mM在荔枝(cv。在7±1°C条件下对Purbi果实进行检测。对荔枝采后品质和果皮褐变相关的生化变化进行了评价。结果表明,SNP (2.0 mM)能显著降低果实失重、果皮褐变指数和腐烂损失。SNP (2.0 mM)处理的果实总花青素和总酚含量较高,过氧化物酶和多酚氧化酶活性降低。其他品质属性,如总可溶性固形物(TSS)、可滴定酸度和抗坏血酸,也记录在SNP (2.0 mM)处理的果实中更大。这些结果与LcPPO、LcPOD和漆酶基因的表达谱一致。与对照果实相比,这些基因的表达水平在一氧化氮处理的果实中受到高度抑制。因此,SNP (2.0 mM)处理可以减少荔枝果皮褐变,延长果实采后冷藏寿命,最长可达18天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信