Anna Sofia Lippolis, Giorgia Lodi, Andrea Giovanni Nuzzolese
{"title":"The Water Health Open Knowledge Graph.","authors":"Anna Sofia Lippolis, Giorgia Lodi, Andrea Giovanni Nuzzolese","doi":"10.1038/s41597-025-04537-4","DOIUrl":null,"url":null,"abstract":"<p><p>Global sustainability challenges have recently led to an increasing interest in the management of water and health resources. Thus, the availability of effective, meaningful and open data is crucial to address those issues in the broader context of the Sustainable Development Goals of clean water and sanitation as targeted by the United Nations. In this paper, we present the Water Health Open Knowledge Graph (WHOW-KG) along with its design methodology and analysis on impact. Developed in the context of the EU-funded WHOW (Water Health Open Knowledge) project, the WHOW-KG is a semantic knowledge graph that models data on water consumption, pollution, extreme weather events, infectious disease rates and drug distribution. Indeed, it aims at supporting a wide range of applications: from knowledge discovery to decision-making, making it a valuable resource for researchers, policymakers, and practitioners in the water and health domains. The WHOW-KG consists of a network of five ontologies and related linked open data, modelled according to those ontologies. As a fully distributed system, it is sustainable over time, can handle large datasets, and allows data providers full control, establishing it as a vital European asset in the fields of water consumption and pollution.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"274"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04537-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Global sustainability challenges have recently led to an increasing interest in the management of water and health resources. Thus, the availability of effective, meaningful and open data is crucial to address those issues in the broader context of the Sustainable Development Goals of clean water and sanitation as targeted by the United Nations. In this paper, we present the Water Health Open Knowledge Graph (WHOW-KG) along with its design methodology and analysis on impact. Developed in the context of the EU-funded WHOW (Water Health Open Knowledge) project, the WHOW-KG is a semantic knowledge graph that models data on water consumption, pollution, extreme weather events, infectious disease rates and drug distribution. Indeed, it aims at supporting a wide range of applications: from knowledge discovery to decision-making, making it a valuable resource for researchers, policymakers, and practitioners in the water and health domains. The WHOW-KG consists of a network of five ontologies and related linked open data, modelled according to those ontologies. As a fully distributed system, it is sustainable over time, can handle large datasets, and allows data providers full control, establishing it as a vital European asset in the fields of water consumption and pollution.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.