Nitrative stress-induced dysregulation of placental AQUAPORIN-9: A potential key player in preeclampsia pathogenesis.

IF 3 2区 医学 Q2 DEVELOPMENTAL BIOLOGY
Yollyseth Medina, Nazarena Fernandez, Matías N Sierra, Mauricio Castro Parodi, Alicia E Damiano
{"title":"Nitrative stress-induced dysregulation of placental AQUAPORIN-9: A potential key player in preeclampsia pathogenesis.","authors":"Yollyseth Medina, Nazarena Fernandez, Matías N Sierra, Mauricio Castro Parodi, Alicia E Damiano","doi":"10.1016/j.placenta.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia is associated with increased oxidative and nitrative stress, resulting in elevated protein nitration and potential functional impairment. Previously, we found an increased expression of AQP9 protein with a loss of function in preeclamptic placentas. However, the link between nitrative stress and AQP9 has not yet been explored. Here, we aimed to evaluate the effect of nitrative stress on placental AQP9 and its role in the pathogenesis of preeclampsia. In silico analysis was conducted on the amino acid sequences of AQP9 to identify potential nitration sites. Levels of 3NyT-AQP9 were assessed by immunoprecipitation in normal and preeclamptic placentas. AQP9 expression and function were evaluated by culturing normal placental explants with 0, 25, 50, 100, and 200 μM ONOO- to induce nitrative stress. Viability and integrity of the explants and stress markers were determined. Water uptake and utilization of lactate mediated by AQP9 were studied along with the molecular expression of AQP9 and 3-NyT-AQP9. The in silico analysis showed that AQP9 is more susceptible to nitration than other AQPs. The abundance of nitrated AQP9 significantly increased in preeclamptic placentas compared to normal ones (n = 4; p < 0.05). Peroxynitrite treatment also increased AQP9 protein expression without altering its gene expression and impaired the transport of water and lactate mediated by this protein. Our findings provide evidence that nitrative stress induces the nitration of AQP9 protein, leading to the accumulation of a non-functional protein in the syncytiotrophoblasts. Therefore, this altered protein may play a pivotal role in the pathogenesis of preeclampsia by disrupting cellular homeostasis.</p>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.placenta.2025.02.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Preeclampsia is associated with increased oxidative and nitrative stress, resulting in elevated protein nitration and potential functional impairment. Previously, we found an increased expression of AQP9 protein with a loss of function in preeclamptic placentas. However, the link between nitrative stress and AQP9 has not yet been explored. Here, we aimed to evaluate the effect of nitrative stress on placental AQP9 and its role in the pathogenesis of preeclampsia. In silico analysis was conducted on the amino acid sequences of AQP9 to identify potential nitration sites. Levels of 3NyT-AQP9 were assessed by immunoprecipitation in normal and preeclamptic placentas. AQP9 expression and function were evaluated by culturing normal placental explants with 0, 25, 50, 100, and 200 μM ONOO- to induce nitrative stress. Viability and integrity of the explants and stress markers were determined. Water uptake and utilization of lactate mediated by AQP9 were studied along with the molecular expression of AQP9 and 3-NyT-AQP9. The in silico analysis showed that AQP9 is more susceptible to nitration than other AQPs. The abundance of nitrated AQP9 significantly increased in preeclamptic placentas compared to normal ones (n = 4; p < 0.05). Peroxynitrite treatment also increased AQP9 protein expression without altering its gene expression and impaired the transport of water and lactate mediated by this protein. Our findings provide evidence that nitrative stress induces the nitration of AQP9 protein, leading to the accumulation of a non-functional protein in the syncytiotrophoblasts. Therefore, this altered protein may play a pivotal role in the pathogenesis of preeclampsia by disrupting cellular homeostasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Placenta
Placenta 医学-发育生物学
CiteScore
6.30
自引率
10.50%
发文量
391
审稿时长
78 days
期刊介绍: Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信