Myeloperoxidase as a biomarker in periodontal disease: electrochemical detection using printed screen graphene electrodes.

IF 1.9 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
María C Valdivieso, Ludy Ortiz, John J Castillo
{"title":"Myeloperoxidase as a biomarker in periodontal disease: electrochemical detection using printed screen graphene electrodes.","authors":"María C Valdivieso, Ludy Ortiz, John J Castillo","doi":"10.1007/s10266-024-01043-8","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontal disease is a common oral health issue marked by inflammation and the breakdown of tissues. Early detection of biomarkers associated with periodontal disease (PD) can significantly aid in timely diagnosis and intervention. Myeloperoxidase (MPO) is an enzyme abundantly present in neutrophils and has been associated in the pathogenesis of PD. Here, we present a novel approach for the electrochemical detection of MPO using printed screen graphene electrodes coupled with principal component analysis (PCA) for data analysis. We employed cyclic voltammetry to characterize the electrochemical behavior of MPO using potassium ferrocyanide and hydrogen peroxide. The process was controlled by species diffusion on the electrode surface using a scan rate spanning from 10 to 400 mVs<sup>-1</sup>. In addition, we investigated the detection of hydrogen peroxide, a substrate of MPO, as a method to indirectly asses MPO electroactivity, leveraging a redox potential of - 500 mV. Saliva samples were collected and analyzed using the developed electrochemical sensor, followed by principal component analysis to differentiate between healthy and diseased samples based on MPO levels. Our findings demonstrate the feasibility of using printed screen graphene electrodes for the sensitive and selective detection of MPO, offering a promising approach for early diagnosis and monitoring of periodontal disease. In conclusion, our results highlight the potential of MPO as a robust biomarker for periodontal disease and highlight the utility of electrochemical sensing coupled with PCA analysis for sensitive and specific detection in clinical settings.</p>","PeriodicalId":19390,"journal":{"name":"Odontology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Odontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10266-024-01043-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontal disease is a common oral health issue marked by inflammation and the breakdown of tissues. Early detection of biomarkers associated with periodontal disease (PD) can significantly aid in timely diagnosis and intervention. Myeloperoxidase (MPO) is an enzyme abundantly present in neutrophils and has been associated in the pathogenesis of PD. Here, we present a novel approach for the electrochemical detection of MPO using printed screen graphene electrodes coupled with principal component analysis (PCA) for data analysis. We employed cyclic voltammetry to characterize the electrochemical behavior of MPO using potassium ferrocyanide and hydrogen peroxide. The process was controlled by species diffusion on the electrode surface using a scan rate spanning from 10 to 400 mVs-1. In addition, we investigated the detection of hydrogen peroxide, a substrate of MPO, as a method to indirectly asses MPO electroactivity, leveraging a redox potential of - 500 mV. Saliva samples were collected and analyzed using the developed electrochemical sensor, followed by principal component analysis to differentiate between healthy and diseased samples based on MPO levels. Our findings demonstrate the feasibility of using printed screen graphene electrodes for the sensitive and selective detection of MPO, offering a promising approach for early diagnosis and monitoring of periodontal disease. In conclusion, our results highlight the potential of MPO as a robust biomarker for periodontal disease and highlight the utility of electrochemical sensing coupled with PCA analysis for sensitive and specific detection in clinical settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Odontology
Odontology 医学-牙科与口腔外科
CiteScore
5.30
自引率
4.00%
发文量
91
审稿时长
>12 weeks
期刊介绍: The Journal Odontology covers all disciplines involved in the fields of dentistry and craniofacial research, including molecular studies related to oral health and disease. Peer-reviewed articles cover topics ranging from research on human dental pulp, to comparisons of analgesics in surgery, to analysis of biofilm properties of dental plaque.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信