Use of quantum hyperlight technology in photobiomodulation on stem cells: an experimental in vitro study.

IF 2.1 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Gülsemin Çiçek, Fatma Öz Bağcı, Tahsin Murad Aktan, Selçuk Duman
{"title":"Use of quantum hyperlight technology in photobiomodulation on stem cells: an experimental in vitro study.","authors":"Gülsemin Çiçek, Fatma Öz Bağcı, Tahsin Murad Aktan, Selçuk Duman","doi":"10.1007/s10103-025-04358-2","DOIUrl":null,"url":null,"abstract":"<p><p>Human umbilical cord matrix Wharton's jelly mesenchymal stem cells (WJ-MSCs) are commonly utilized in regenerative medicine due to their therapeutic benefits. However, the microenvironmental stress present in patients with hyperglycemia can significantly reduce mesenchymal stem cell (MSC) viability under high-glucose conditions in the body, ultimately reducing their therapeutic effectiveness. Enhancing the survival rate of MSCs following cell transplantation remains a crucial challenge. This study investigates whether Quantum Hyperlight (QHL) can counteract the detrimental effects of high glucose (HG), thereby improving MSC survival, proliferation, and mitochondrial function. We aimed to evaluate the effect of QHL on cellular viability, proliferation, and mitochondrial activity in WJ-MSCs exposed to HG. MSCs were cultured in a medium containing normal glucose (NG) (1 g/L) and HG (4.5 g/L). MSCs in the HG medium were exposed to QHL for 90 s or 180 s with an energy density of 2.4 Joules/cm<sup>2</sup>/minute and an average power density of 40 mW/cm<sup>2</sup>. Then, proliferating cell nuclear antigen (PCNA), MTT assays, and Mitotracker Green staining were performed to evaluate cell viability and proliferation. The viability of MSCs was significantly increased in the QHL-treated groups (84% in QHL-90 s and 86% in QHL-180 s) compared to the untreated HG group (65%, p < 0.001). PCNA expression in QHL-90 s and QHL-180 s groups showed significant increases (p < 0.001) compared to the untreated HG group. MitoTracker staining intensity was significantly higher in the QHL-treated groups compared to the untreated HG group (p < 0.001). The HG environment reduced viability, proliferation, and mitochondrial staining. In the context of the NG environment, MSCs exhibited notable differences. However, the viability, proliferation, and mitochondrial staining rates of MSCs were significantly higher in the HG conditions when treated with QHL compared to the group that did not receive QHL. This study introduces QHL as a novel approach to enhance the therapeutic potential of WJ-MSCs under HG conditions, demonstrating its ability to improve cellular viability, proliferation, and mitochondrial activity. This study highlights its potential as a pretreatment to improve clinical outcomes in regenerative medicine.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"40 1","pages":"96"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-025-04358-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human umbilical cord matrix Wharton's jelly mesenchymal stem cells (WJ-MSCs) are commonly utilized in regenerative medicine due to their therapeutic benefits. However, the microenvironmental stress present in patients with hyperglycemia can significantly reduce mesenchymal stem cell (MSC) viability under high-glucose conditions in the body, ultimately reducing their therapeutic effectiveness. Enhancing the survival rate of MSCs following cell transplantation remains a crucial challenge. This study investigates whether Quantum Hyperlight (QHL) can counteract the detrimental effects of high glucose (HG), thereby improving MSC survival, proliferation, and mitochondrial function. We aimed to evaluate the effect of QHL on cellular viability, proliferation, and mitochondrial activity in WJ-MSCs exposed to HG. MSCs were cultured in a medium containing normal glucose (NG) (1 g/L) and HG (4.5 g/L). MSCs in the HG medium were exposed to QHL for 90 s or 180 s with an energy density of 2.4 Joules/cm2/minute and an average power density of 40 mW/cm2. Then, proliferating cell nuclear antigen (PCNA), MTT assays, and Mitotracker Green staining were performed to evaluate cell viability and proliferation. The viability of MSCs was significantly increased in the QHL-treated groups (84% in QHL-90 s and 86% in QHL-180 s) compared to the untreated HG group (65%, p < 0.001). PCNA expression in QHL-90 s and QHL-180 s groups showed significant increases (p < 0.001) compared to the untreated HG group. MitoTracker staining intensity was significantly higher in the QHL-treated groups compared to the untreated HG group (p < 0.001). The HG environment reduced viability, proliferation, and mitochondrial staining. In the context of the NG environment, MSCs exhibited notable differences. However, the viability, proliferation, and mitochondrial staining rates of MSCs were significantly higher in the HG conditions when treated with QHL compared to the group that did not receive QHL. This study introduces QHL as a novel approach to enhance the therapeutic potential of WJ-MSCs under HG conditions, demonstrating its ability to improve cellular viability, proliferation, and mitochondrial activity. This study highlights its potential as a pretreatment to improve clinical outcomes in regenerative medicine.

量子超光技术在干细胞光生物调节中的应用:一项体外实验研究。
人类脐带基质华顿氏果冻间充质干细胞(WJ-MSCs)由于其治疗益处而被广泛应用于再生医学。然而,高血糖患者存在的微环境应激可显著降低体内高糖条件下间充质干细胞(MSC)的活力,最终降低其治疗效果。提高骨髓间充质干细胞移植后的存活率仍然是一个重要的挑战。本研究探讨量子超光(QHL)是否可以抵消高糖(HG)的有害影响,从而改善MSC的存活、增殖和线粒体功能。我们的目的是评估QHL对暴露于HG的WJ-MSCs的细胞活力、增殖和线粒体活性的影响。MSCs在含有正常葡萄糖(NG) (1 g/L)和HG (4.5 g/L)的培养基中培养。MSCs在HG介质中暴露于QHL 90 s或180 s,能量密度为2.4焦耳/cm2/分钟,平均功率密度为40 mW/cm2。然后进行增殖细胞核抗原(PCNA)、MTT和Mitotracker Green染色,评估细胞活力和增殖能力。与未处理的HG组相比,qhl处理组MSCs的活力显著增加(QHL-90 s为84%,QHL-180 s为86%)(65%,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lasers in Medical Science
Lasers in Medical Science 医学-工程:生物医学
CiteScore
4.50
自引率
4.80%
发文量
192
审稿时长
3-8 weeks
期刊介绍: Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics. The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信