Fluorescence in situ hybridization protocol for cardiomyocytes.

IF 4.9 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Zehao Yao, Lina Bai, Yu Nie
{"title":"Fluorescence in situ hybridization protocol for cardiomyocytes.","authors":"Zehao Yao, Lina Bai, Yu Nie","doi":"10.1016/j.yjmcc.2025.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring cardiomyocyte nuclear ploidy is crucial for evaluating broader aspects of cardiac development, function, and disease progression. Fluorescence in situ hybridization (FISH) remains the gold standard for ploidy identification; however, its application in cardiomyocytes is hindered by their unique cellular complexities. Here, we describe a detailed cardiomyocyte-specific FISH (cardioFISH) protocol. CardioFISH incorporates a tailored enzymatic digestion strategy to enhances nuclear accessibility while preserving cellular integrity and minimizing sarcomere-derived autofluorescence. Additionally, we introduce a 3D nuclear visualization framework for comprehensive cardioFISH signal analysis, addressing the limitations imposed by the large nuclear dimensions of cardiomyocytes, where signals are frequently distributed across multiple imaging planes. This two-day cardioFISH protocol is applicable to various stages of cardiomyocyte development and provides a powerful tool for advancing studies of cardiomyocyte ploidy.</p>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yjmcc.2025.02.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring cardiomyocyte nuclear ploidy is crucial for evaluating broader aspects of cardiac development, function, and disease progression. Fluorescence in situ hybridization (FISH) remains the gold standard for ploidy identification; however, its application in cardiomyocytes is hindered by their unique cellular complexities. Here, we describe a detailed cardiomyocyte-specific FISH (cardioFISH) protocol. CardioFISH incorporates a tailored enzymatic digestion strategy to enhances nuclear accessibility while preserving cellular integrity and minimizing sarcomere-derived autofluorescence. Additionally, we introduce a 3D nuclear visualization framework for comprehensive cardioFISH signal analysis, addressing the limitations imposed by the large nuclear dimensions of cardiomyocytes, where signals are frequently distributed across multiple imaging planes. This two-day cardioFISH protocol is applicable to various stages of cardiomyocyte development and provides a powerful tool for advancing studies of cardiomyocyte ploidy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
171
审稿时长
42 days
期刊介绍: The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信