Samantha R. Locke , Poonam G. Vinayamohan , Dubraska Diaz-Campos , Gregory Habing
{"title":"Biofilm-forming Abilities of Salmonella Serovars Isolated From Clinically Ill Livestock at 48 and 168 h","authors":"Samantha R. Locke , Poonam G. Vinayamohan , Dubraska Diaz-Campos , Gregory Habing","doi":"10.1016/j.jfp.2025.100466","DOIUrl":null,"url":null,"abstract":"<div><div>Little is known regarding the biofilm-forming capabilities of a somewhat distinct population of <em>Salmonellae</em> present on-farm and responsible for illnesses in livestock and humans. Evaluation of cleaning and disinfection in preharvest environments has found little success in eradicating <em>Salmonella</em> biofilms to date. Disrupting the environmental survival of <em>Salmonella</em> via biofilm removal will be critical to reducing carriage in livestock reservoirs and the risk of foodborne illness. Therefore, the objective of this study was to characterize the biofilm-forming abilities of <em>Salmonellae</em> relevant to livestock and human health. Eighty-one isolates from 8 serovars (<em>S</em>. Typhimurium, Heidelberg, Montevideo, Agona, Newport, Dublin, 4,[5],12:i:-, Enteritidis) were sourced from poultry and clinically ill cattle, swine, and equine. We hypothesized that biofilm production rate would vary significantly between serovars, and biofilm density would increase from 48 to 168 hrs. Isolates were grown in 24-well microplates in tryptone soy broth at ambient temperature, with media refreshed every 48 h. Biofilm density was quantified using crystal violet assays. Strong biofilm formers comprised 84% (68/81) of isolates tested, while 5.9% (4/81) were considered weak. Biofilm density was significantly greater at 168 h versus 48 h for all serovars except Dublin. Additionally, biofilm growth rate varied by serovar. Differences in biofilm-associated genes were evaluated, and only the detection of <em>csrB</em> was significantly associated with the categorization of biofilm producers. Results suggest inconsistent cleaning likely allows for the establishment of biofilms in on-farm environments. Further, some serovars may pose a greater risk for rapid biofilm establishment. This study provides data necessary to inform the development of evidence-based cleaning and disinfection protocols effective against the most prolific biofilm-forming strains of virulent <em>Salmonella.</em></div></div>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":"88 4","pages":"Article 100466"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362028X25000183","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Little is known regarding the biofilm-forming capabilities of a somewhat distinct population of Salmonellae present on-farm and responsible for illnesses in livestock and humans. Evaluation of cleaning and disinfection in preharvest environments has found little success in eradicating Salmonella biofilms to date. Disrupting the environmental survival of Salmonella via biofilm removal will be critical to reducing carriage in livestock reservoirs and the risk of foodborne illness. Therefore, the objective of this study was to characterize the biofilm-forming abilities of Salmonellae relevant to livestock and human health. Eighty-one isolates from 8 serovars (S. Typhimurium, Heidelberg, Montevideo, Agona, Newport, Dublin, 4,[5],12:i:-, Enteritidis) were sourced from poultry and clinically ill cattle, swine, and equine. We hypothesized that biofilm production rate would vary significantly between serovars, and biofilm density would increase from 48 to 168 hrs. Isolates were grown in 24-well microplates in tryptone soy broth at ambient temperature, with media refreshed every 48 h. Biofilm density was quantified using crystal violet assays. Strong biofilm formers comprised 84% (68/81) of isolates tested, while 5.9% (4/81) were considered weak. Biofilm density was significantly greater at 168 h versus 48 h for all serovars except Dublin. Additionally, biofilm growth rate varied by serovar. Differences in biofilm-associated genes were evaluated, and only the detection of csrB was significantly associated with the categorization of biofilm producers. Results suggest inconsistent cleaning likely allows for the establishment of biofilms in on-farm environments. Further, some serovars may pose a greater risk for rapid biofilm establishment. This study provides data necessary to inform the development of evidence-based cleaning and disinfection protocols effective against the most prolific biofilm-forming strains of virulent Salmonella.
期刊介绍:
The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with:
Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain;
Microbiological food quality and traditional/novel methods to assay microbiological food quality;
Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation;
Food fermentations and food-related probiotics;
Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers;
Risk assessments for food-related hazards;
Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods;
Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.