{"title":"Edge effects in a planar magnet caused by the impact of an electric field.","authors":"E B Magadeev, R M Vakhitov","doi":"10.1088/1361-648X/adb676","DOIUrl":null,"url":null,"abstract":"<p><p>The paper theoretically studies the effect of a non-uniform electric field on thin ferromagnetic films with a planar distribution of magnetization, which are of interest due to certain possibilities for the formation of vortex-like structures in them and the influence of an electric field is one of the most effective approaches to controlling structures of this type. It is proven that in this case the presence of inhomogeneous magnetoelectric interaction has virtually no effect on the magnetic structure of the sample far from its boundaries, but leads to the appearance of edge effects consisting in the formation of solitary magnetic inhomogeneities at the film boundary. In this case, the structure and properties of such inhomogeneities are completely determined by the values of the electric field potential at the sample boundary. Both for the general case and for a number of specific configurations of the external field, the distribution of magnetization in the region of inhomogeneity is found, and its energy is calculated.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb676","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The paper theoretically studies the effect of a non-uniform electric field on thin ferromagnetic films with a planar distribution of magnetization, which are of interest due to certain possibilities for the formation of vortex-like structures in them and the influence of an electric field is one of the most effective approaches to controlling structures of this type. It is proven that in this case the presence of inhomogeneous magnetoelectric interaction has virtually no effect on the magnetic structure of the sample far from its boundaries, but leads to the appearance of edge effects consisting in the formation of solitary magnetic inhomogeneities at the film boundary. In this case, the structure and properties of such inhomogeneities are completely determined by the values of the electric field potential at the sample boundary. Both for the general case and for a number of specific configurations of the external field, the distribution of magnetization in the region of inhomogeneity is found, and its energy is calculated.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.