Mannose-6-phosphate-PEG-lipid conjugates improve liposomal uptake.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Boris Sevarika, Deniz Capri, Joël Frey, Margarita C Dinamarca, Daniel Häussinger, Scott McNeil
{"title":"Mannose-6-phosphate-PEG-lipid conjugates improve liposomal uptake.","authors":"Boris Sevarika, Deniz Capri, Joël Frey, Margarita C Dinamarca, Daniel Häussinger, Scott McNeil","doi":"10.1016/j.ejpb.2025.114665","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted liposomes are a keystone of nanomedicine, offering a precise and efficient means to deliver therapeutic agents directly to diseased tissues or cells. By incorporating targeting ligands on their surface, liposomes enhance the specificity of drug delivery, improving efficacy and reducing toxicity. Mannose-6-phosphate (M6P) is a crucial molecular tag for internalization and intracellular sorting of macromolecular structures to lysosomes. Taking advantage of this mechanism, we designed and developed liposomal systems to enhance therapeutic delivery to the lysosomes. The synthesized M6P-based targeting molecules were covalently coupled to a phospholipid using a polyethylene glycol (PEG) linker. The prepared ligands were successfully incorporated into the liposomes, yielding a size of roughly 100 nm and a zeta potential of around -40 mV. Incorporating the M6P-based ligand enhances the internalization of liposomes in a concentration-dependent manner, increasing uptake by up to 14-fold in several tested cell lines. In contrast, structurally similar monosaccharides and equally charged ligands failed to replicate this effect, highlighting the specificity of M6P-mediated internalization. Our studies demonstrate that M6P-mediated uptake predominantly occurs via a clathrin-mediated pathway, and once internalized, 72 % of the M6P-coated liposomes are associated with the lysosomal compartment. This study highlights the potential of M6P-based liposomal carriers as a modular platform for targeted lysosomal delivery, offering a promising therapeutic approach for lysosomal storage diseases.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114665"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114665","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted liposomes are a keystone of nanomedicine, offering a precise and efficient means to deliver therapeutic agents directly to diseased tissues or cells. By incorporating targeting ligands on their surface, liposomes enhance the specificity of drug delivery, improving efficacy and reducing toxicity. Mannose-6-phosphate (M6P) is a crucial molecular tag for internalization and intracellular sorting of macromolecular structures to lysosomes. Taking advantage of this mechanism, we designed and developed liposomal systems to enhance therapeutic delivery to the lysosomes. The synthesized M6P-based targeting molecules were covalently coupled to a phospholipid using a polyethylene glycol (PEG) linker. The prepared ligands were successfully incorporated into the liposomes, yielding a size of roughly 100 nm and a zeta potential of around -40 mV. Incorporating the M6P-based ligand enhances the internalization of liposomes in a concentration-dependent manner, increasing uptake by up to 14-fold in several tested cell lines. In contrast, structurally similar monosaccharides and equally charged ligands failed to replicate this effect, highlighting the specificity of M6P-mediated internalization. Our studies demonstrate that M6P-mediated uptake predominantly occurs via a clathrin-mediated pathway, and once internalized, 72 % of the M6P-coated liposomes are associated with the lysosomal compartment. This study highlights the potential of M6P-based liposomal carriers as a modular platform for targeted lysosomal delivery, offering a promising therapeutic approach for lysosomal storage diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信