{"title":"Investigation of powder properties and application aspects impacting nasal deposition of spray-dried powders in a nasal cast","authors":"Angelika Jüptner , Regina Scherließ","doi":"10.1016/j.ejpb.2025.114666","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, spray-dried formulations differing in morphology (spherical and wrinkled), surface polarity (hydrophilic and hydrophobic), and size (20–30 µm and 3 <!--> <!-->µm) were evaluated in a nasal cast to assess their deposition profiles. The objective was to identify how formulation properties and application aspects influence the deposition profile. For this purpose, the formulations were administered at different application angles (45° and 60°), fill weights (20 <!--> <!-->mg and 40 <!--> <!-->mg), and airflow rates (0 <!--> <!-->L/min and 15 <!--> <!-->L/min) in conjunction with a UDS powder device. The results indicate a more posterior deposition profile for 45° compared to 60° due to increased deposition in the turbinate region; conversely, deposition profiles between fill weights were comparable. Application with simultaneous airflow should be avoided because of an increasing postnasal fraction. No influence of morphology could be observed, but for the surface polarity an influence was apparent, if the powder was applied with a simulated inspiration. In these cases, a hydrophobic formulation was better dispersible than a hydrophilic formulation, which led to an increased postnasal fraction. A particle size for pulmonary application demonstrated comparable results to nasal formulations with respect to the turbinate deposition but exhibited a high postnasal fraction for hydrophobic formulations.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"209 ","pages":"Article 114666"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641125000426","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, spray-dried formulations differing in morphology (spherical and wrinkled), surface polarity (hydrophilic and hydrophobic), and size (20–30 µm and 3 µm) were evaluated in a nasal cast to assess their deposition profiles. The objective was to identify how formulation properties and application aspects influence the deposition profile. For this purpose, the formulations were administered at different application angles (45° and 60°), fill weights (20 mg and 40 mg), and airflow rates (0 L/min and 15 L/min) in conjunction with a UDS powder device. The results indicate a more posterior deposition profile for 45° compared to 60° due to increased deposition in the turbinate region; conversely, deposition profiles between fill weights were comparable. Application with simultaneous airflow should be avoided because of an increasing postnasal fraction. No influence of morphology could be observed, but for the surface polarity an influence was apparent, if the powder was applied with a simulated inspiration. In these cases, a hydrophobic formulation was better dispersible than a hydrophilic formulation, which led to an increased postnasal fraction. A particle size for pulmonary application demonstrated comparable results to nasal formulations with respect to the turbinate deposition but exhibited a high postnasal fraction for hydrophobic formulations.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.