Jelena Gotić, Luka Špelić, Josipa Kuleš, Anita Horvatić, Andrea Gelemanović, Blanka Beer Ljubić, Vladimir Mrljak, Nika Brkljača Bottegaro
{"title":"Proteomic analysis emphasizes the adaptation of energy metabolism in horses during endurance races.","authors":"Jelena Gotić, Luka Špelić, Josipa Kuleš, Anita Horvatić, Andrea Gelemanović, Blanka Beer Ljubić, Vladimir Mrljak, Nika Brkljača Bottegaro","doi":"10.1186/s12917-025-04518-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-term aerobic exercise during endurance racing places high demands on equine homeostasis. This study aimed to use proteomic analysis to elucidate complex biological responses during endurance exercise. It was hypothesized that different serum proteome changes would be noted, reflecting physiological processes as a response to race. The serum has been taken before and after an 80 km race from 13 endurance horses. Proteomic analysis of samples has been performed by TMT-based quantitative method. Apolipoprotein and haptoglobin values have been validated by enzyme-linked immunosorbent assay and biochemical assay respectively. The difference in protein abundance between pre and post-race values has been determined.</p><p><strong>Results: </strong>In serum samples, 10 master proteins with significant p value differences between pre- and post-race abundances were detected. Increased protein abundance after the race was noted for the apolipoprotein groups: ApoA IV and E, Microfibril-associated glycoprotein 4 (MFAP4), transferrin, and antithrombin-III. Decreases in apolipoprotein C-II, C-III and R, alpha-1-microglobulin/bikunin precursor protein (AMBP) and haptoglobin abundance were reported after the race compared to before the race. Gene Ontology analysis revealed changes in triglyceride and acylglycerol homeostasis, lipid localization regulation, triglyceride catabolic processes, cholesterol binding, antioxidant activity and several cellular components.</p><p><strong>Conclusions: </strong>The endurance race caused several homeostatic imbalances characterized by various alterations in serum protein levels. The most pronounced changes emphasize the adaptation of energy metabolism to a more pronounced consumption of lipids.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"67"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04518-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Long-term aerobic exercise during endurance racing places high demands on equine homeostasis. This study aimed to use proteomic analysis to elucidate complex biological responses during endurance exercise. It was hypothesized that different serum proteome changes would be noted, reflecting physiological processes as a response to race. The serum has been taken before and after an 80 km race from 13 endurance horses. Proteomic analysis of samples has been performed by TMT-based quantitative method. Apolipoprotein and haptoglobin values have been validated by enzyme-linked immunosorbent assay and biochemical assay respectively. The difference in protein abundance between pre and post-race values has been determined.
Results: In serum samples, 10 master proteins with significant p value differences between pre- and post-race abundances were detected. Increased protein abundance after the race was noted for the apolipoprotein groups: ApoA IV and E, Microfibril-associated glycoprotein 4 (MFAP4), transferrin, and antithrombin-III. Decreases in apolipoprotein C-II, C-III and R, alpha-1-microglobulin/bikunin precursor protein (AMBP) and haptoglobin abundance were reported after the race compared to before the race. Gene Ontology analysis revealed changes in triglyceride and acylglycerol homeostasis, lipid localization regulation, triglyceride catabolic processes, cholesterol binding, antioxidant activity and several cellular components.
Conclusions: The endurance race caused several homeostatic imbalances characterized by various alterations in serum protein levels. The most pronounced changes emphasize the adaptation of energy metabolism to a more pronounced consumption of lipids.
期刊介绍:
BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.