Kobina Essandoh, Grace A Eramo, Arasakumar Subramani, Matthew J Brody
{"title":"Rab3gap1 Palmitoylation Cycling Modulates Cardiomyocyte Exocytosis and Atrial Natriuretic Peptide Release.","authors":"Kobina Essandoh, Grace A Eramo, Arasakumar Subramani, Matthew J Brody","doi":"10.1016/j.bpj.2025.02.010","DOIUrl":null,"url":null,"abstract":"<p><p>Rab3 GTPase activating protein 1 (Rab3gap1) hydrolyzes GTP on Rab3 to inactivate it and reinitiate the Rab3 cycle that regulates exocytic release of neuropeptides and hormones from neuroendocrine cells and atrial natriuretic peptide (ANP) secretion by cardiomyocytes. Cysteine palmitoylation of Rab3gap1 by the Golgi-localized S-acyltransferase zDHHC9 was recently shown to hinder ANP release by impairing Rab3gap1-mediated nucleotide cycling on Rab3a. Here we interrogated the cysteine residues of Rab3gap1 modified by palmitoylation and impacts on ANP secretion in cardiomyocytes. Although mutation of the previously identified cysteine-678 (Cys-678) site of Rab3gap1 alone was insufficient to elicit complete loss of Rab3gap1 palmitoylation in cardiomyocytes, combinatorial mutation of Cys-509, 510, 521, 522, and 678 (Rab3gap1<sup>5CS</sup>) dramatically reduced Rab3gap1 palmitoylation. Notably, total cellular GAP activity in cardiomyocytes was maintained with mutation of the Rab3gap1 palmitoylation sites as the Rab3gap1<sup>5CS</sup> mutant substantially reduced steady-state Rab3a-GTP levels in cardiomyocytes similar to wildtype Rab3gap1. However, while expression of wildtype Rab3gap1 induced robust secretion of ANP and greatly enhanced phenylephrine (PE)-stimulated ANP release, the Rab3gap1<sup>5CS</sup> palmitoylation-deficient mutant was incapable of promoting exocytosis and ANP release by cardiomyocytes. These data suggest Rab3gap1 cysteine palmitoylation may target Rab3gap1 to Rab3a for regulated GAP-mediated inactivation at specific intracellular membrane domains to modulate the Rab3 cycle and exocytosis. Collectively, these data support a role for Rab3gap1 palmitoylation cycling in spatiotemporal control of the Rab3 cycle to regulate exocytosis and ANP secretion by cardiomyocytes.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.02.010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rab3 GTPase activating protein 1 (Rab3gap1) hydrolyzes GTP on Rab3 to inactivate it and reinitiate the Rab3 cycle that regulates exocytic release of neuropeptides and hormones from neuroendocrine cells and atrial natriuretic peptide (ANP) secretion by cardiomyocytes. Cysteine palmitoylation of Rab3gap1 by the Golgi-localized S-acyltransferase zDHHC9 was recently shown to hinder ANP release by impairing Rab3gap1-mediated nucleotide cycling on Rab3a. Here we interrogated the cysteine residues of Rab3gap1 modified by palmitoylation and impacts on ANP secretion in cardiomyocytes. Although mutation of the previously identified cysteine-678 (Cys-678) site of Rab3gap1 alone was insufficient to elicit complete loss of Rab3gap1 palmitoylation in cardiomyocytes, combinatorial mutation of Cys-509, 510, 521, 522, and 678 (Rab3gap15CS) dramatically reduced Rab3gap1 palmitoylation. Notably, total cellular GAP activity in cardiomyocytes was maintained with mutation of the Rab3gap1 palmitoylation sites as the Rab3gap15CS mutant substantially reduced steady-state Rab3a-GTP levels in cardiomyocytes similar to wildtype Rab3gap1. However, while expression of wildtype Rab3gap1 induced robust secretion of ANP and greatly enhanced phenylephrine (PE)-stimulated ANP release, the Rab3gap15CS palmitoylation-deficient mutant was incapable of promoting exocytosis and ANP release by cardiomyocytes. These data suggest Rab3gap1 cysteine palmitoylation may target Rab3gap1 to Rab3a for regulated GAP-mediated inactivation at specific intracellular membrane domains to modulate the Rab3 cycle and exocytosis. Collectively, these data support a role for Rab3gap1 palmitoylation cycling in spatiotemporal control of the Rab3 cycle to regulate exocytosis and ANP secretion by cardiomyocytes.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.