Yathreb Easa, Olga Loza, Roie Cohen, David Sprinzak
{"title":"Fat4 intracellular domain controls internalization of Fat4/Dchs1 planar polarity membrane complexes.","authors":"Yathreb Easa, Olga Loza, Roie Cohen, David Sprinzak","doi":"10.1016/j.bpj.2025.02.012","DOIUrl":null,"url":null,"abstract":"<p><p>The Fat/Dachsous (Ft/Ds) pathway is a highly conserved pathway regulating planar cell polarity (PCP) across different animal species. Proteins from the Ft and Ds family are large transmembrane protocadherins that form heterophilic complexes on the boundaries between cells. Fat4 and Dchs1, the main mammalian homologues of this pathway, have been implicated in PCP in various epithelial tissues and were shown to form extremely stable complexes at the boundaries between cells. It is unclear however, what are the dynamics controlling such stable boundary complexes, and how the formation and internalization of these complexes is regulated. Here, we use quantitative live imaging to elucidate the role of the intracellular domains (ICD) of Fat4 and Dchs1 in regulating Fat4/Dchs1 complex dynamics. We show that removing the ICD of Fat4 results in a reduction of both Trans-endocytosis (TEC) of Dchs1 into the Fat4 cells and boundary accumulation of Fat4/Dchs1 complexes, but does not affect the diffusion of the complexes at the boundary. We further show that the ICD of Fat4 controls the internalization rate of Fat4/Dchs1 complexes. Finally, we find that while actin polymerization is required for the accumulation at the boundary of Fat4/Dchs1 complexes, we do not identify correlations between Fat4/Dchs1 complexes and local actin accumulation. Overall, we suggest that the Fat4 ICD is important for the internalization and plasticity of the highly stable Fat4/Dchs1 complexes associated with PCP.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.02.012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Fat/Dachsous (Ft/Ds) pathway is a highly conserved pathway regulating planar cell polarity (PCP) across different animal species. Proteins from the Ft and Ds family are large transmembrane protocadherins that form heterophilic complexes on the boundaries between cells. Fat4 and Dchs1, the main mammalian homologues of this pathway, have been implicated in PCP in various epithelial tissues and were shown to form extremely stable complexes at the boundaries between cells. It is unclear however, what are the dynamics controlling such stable boundary complexes, and how the formation and internalization of these complexes is regulated. Here, we use quantitative live imaging to elucidate the role of the intracellular domains (ICD) of Fat4 and Dchs1 in regulating Fat4/Dchs1 complex dynamics. We show that removing the ICD of Fat4 results in a reduction of both Trans-endocytosis (TEC) of Dchs1 into the Fat4 cells and boundary accumulation of Fat4/Dchs1 complexes, but does not affect the diffusion of the complexes at the boundary. We further show that the ICD of Fat4 controls the internalization rate of Fat4/Dchs1 complexes. Finally, we find that while actin polymerization is required for the accumulation at the boundary of Fat4/Dchs1 complexes, we do not identify correlations between Fat4/Dchs1 complexes and local actin accumulation. Overall, we suggest that the Fat4 ICD is important for the internalization and plasticity of the highly stable Fat4/Dchs1 complexes associated with PCP.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.