Time-resolved Solvothermal Synthesis for Controlling Lateral Size of 2D Metal-Organic Layers.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jiawei Chen, Yuhang Song, Yumeng Gan, Wanzhen Cai, Haoshang Wang, Huichong Liu, Bingling Dai, Yuanzhao Peng, Cheng Wang
{"title":"Time-resolved Solvothermal Synthesis for Controlling Lateral Size of 2D Metal-Organic Layers.","authors":"Jiawei Chen, Yuhang Song, Yumeng Gan, Wanzhen Cai, Haoshang Wang, Huichong Liu, Bingling Dai, Yuanzhao Peng, Cheng Wang","doi":"10.1002/smtd.202402078","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-Organic Layers (MOLs), 2D analogs of Metal-Organic Frameworks (MOFs), feature monolayer structures with the potential for various applications. Controlling the lateral size of MOLs is essential for enhancing their dispersibility in solvents and optimizing performance. However, reducing lateral dimensions while preserving monolayer thickness presents a challenge due to the precise conditions required for monolayer formation. This study utilizes a time-resolved solvothermal synthesis method, employing flow chemistry to adjust reaction conditions dynamically during different stages of MOL growth. Fast nucleation is triggered initially to generate numerous nuclei, followed by a shift to slower growth rates, limiting further expansion and preventing the formation of amorphous structures. This approach effectively refines the lateral dimensions of nano-MOLs while maintaining monolayer integrity. The reduction in lateral dimensions has a direct effect on improving catalytic performance, demonstrating the potential for fine-tuned nanosized MOLs in advanced applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402078"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402078","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-Organic Layers (MOLs), 2D analogs of Metal-Organic Frameworks (MOFs), feature monolayer structures with the potential for various applications. Controlling the lateral size of MOLs is essential for enhancing their dispersibility in solvents and optimizing performance. However, reducing lateral dimensions while preserving monolayer thickness presents a challenge due to the precise conditions required for monolayer formation. This study utilizes a time-resolved solvothermal synthesis method, employing flow chemistry to adjust reaction conditions dynamically during different stages of MOL growth. Fast nucleation is triggered initially to generate numerous nuclei, followed by a shift to slower growth rates, limiting further expansion and preventing the formation of amorphous structures. This approach effectively refines the lateral dimensions of nano-MOLs while maintaining monolayer integrity. The reduction in lateral dimensions has a direct effect on improving catalytic performance, demonstrating the potential for fine-tuned nanosized MOLs in advanced applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信