{"title":"Time-resolved Solvothermal Synthesis for Controlling Lateral Size of 2D Metal-Organic Layers.","authors":"Jiawei Chen, Yuhang Song, Yumeng Gan, Wanzhen Cai, Haoshang Wang, Huichong Liu, Bingling Dai, Yuanzhao Peng, Cheng Wang","doi":"10.1002/smtd.202402078","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-Organic Layers (MOLs), 2D analogs of Metal-Organic Frameworks (MOFs), feature monolayer structures with the potential for various applications. Controlling the lateral size of MOLs is essential for enhancing their dispersibility in solvents and optimizing performance. However, reducing lateral dimensions while preserving monolayer thickness presents a challenge due to the precise conditions required for monolayer formation. This study utilizes a time-resolved solvothermal synthesis method, employing flow chemistry to adjust reaction conditions dynamically during different stages of MOL growth. Fast nucleation is triggered initially to generate numerous nuclei, followed by a shift to slower growth rates, limiting further expansion and preventing the formation of amorphous structures. This approach effectively refines the lateral dimensions of nano-MOLs while maintaining monolayer integrity. The reduction in lateral dimensions has a direct effect on improving catalytic performance, demonstrating the potential for fine-tuned nanosized MOLs in advanced applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402078"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402078","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-Organic Layers (MOLs), 2D analogs of Metal-Organic Frameworks (MOFs), feature monolayer structures with the potential for various applications. Controlling the lateral size of MOLs is essential for enhancing their dispersibility in solvents and optimizing performance. However, reducing lateral dimensions while preserving monolayer thickness presents a challenge due to the precise conditions required for monolayer formation. This study utilizes a time-resolved solvothermal synthesis method, employing flow chemistry to adjust reaction conditions dynamically during different stages of MOL growth. Fast nucleation is triggered initially to generate numerous nuclei, followed by a shift to slower growth rates, limiting further expansion and preventing the formation of amorphous structures. This approach effectively refines the lateral dimensions of nano-MOLs while maintaining monolayer integrity. The reduction in lateral dimensions has a direct effect on improving catalytic performance, demonstrating the potential for fine-tuned nanosized MOLs in advanced applications.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.