Imaging of Recombination Rates and Lifetime in Perovskite Thin Film Processing

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Benjamin Hacene, Nils W. Rosemann, Julie Roger, Xuzheng Liu, Daniel O. Baumann, Ronja Pappenberger, Mohammad Gholipoor, Hannah Racky, Paul Fassl, Ian A. Howard, Ulrich W. Paetzold
{"title":"Imaging of Recombination Rates and Lifetime in Perovskite Thin Film Processing","authors":"Benjamin Hacene,&nbsp;Nils W. Rosemann,&nbsp;Julie Roger,&nbsp;Xuzheng Liu,&nbsp;Daniel O. Baumann,&nbsp;Ronja Pappenberger,&nbsp;Mohammad Gholipoor,&nbsp;Hannah Racky,&nbsp;Paul Fassl,&nbsp;Ian A. Howard,&nbsp;Ulrich W. Paetzold","doi":"10.1002/smtd.202402119","DOIUrl":null,"url":null,"abstract":"<p>Large-scale fabrication and optimization of high-quality polycrystalline perovskite thin films present significant challenges in scientific research and industry. Shifting from single-spot measurements to imaging techniques facilitates the transition from laboratory-scale to large-scale processing. While single-spot photoluminescence (PL) methods provide high-depth insights into local optoelectronic characteristics, they are insufficient for assessing reliable information on homogeneity and spatial characteristics. Currently, no PL-based imaging method delivers a comparable level of information depth on charge carrier dynamics to single-spot PL methods. In response, this work introduces a non-invasive imaging technique based on double-pulse excitation. Varying the time delay between the pulses gives rise to spatial information on relative photoluminescence quantum yield (rPLQY) in thin films, yielding fundamental optoelectronic characteristics such as external radiative and effective non-radiative recombination rates and charge-carrier lifetime. Compared to traditional PL-imaging and <i>k</i>-imaging demonstrates the superiority of rPLQY-imaging in revealing charge carrier dynamics. This technique proves applicable across various sample configurations, irrespective of the presence of electrodes and charge transport layers. In addition, the method can estimate surface recombination velocity and variations in escape and parasitic absorption probabilities. Overall, the rPLQY-imaging method emerges as a valuable tool for scientific research aimed at characterizing and optimizing large-area perovskite thin films.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 7","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smtd.202402119","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202402119","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale fabrication and optimization of high-quality polycrystalline perovskite thin films present significant challenges in scientific research and industry. Shifting from single-spot measurements to imaging techniques facilitates the transition from laboratory-scale to large-scale processing. While single-spot photoluminescence (PL) methods provide high-depth insights into local optoelectronic characteristics, they are insufficient for assessing reliable information on homogeneity and spatial characteristics. Currently, no PL-based imaging method delivers a comparable level of information depth on charge carrier dynamics to single-spot PL methods. In response, this work introduces a non-invasive imaging technique based on double-pulse excitation. Varying the time delay between the pulses gives rise to spatial information on relative photoluminescence quantum yield (rPLQY) in thin films, yielding fundamental optoelectronic characteristics such as external radiative and effective non-radiative recombination rates and charge-carrier lifetime. Compared to traditional PL-imaging and k-imaging demonstrates the superiority of rPLQY-imaging in revealing charge carrier dynamics. This technique proves applicable across various sample configurations, irrespective of the presence of electrodes and charge transport layers. In addition, the method can estimate surface recombination velocity and variations in escape and parasitic absorption probabilities. Overall, the rPLQY-imaging method emerges as a valuable tool for scientific research aimed at characterizing and optimizing large-area perovskite thin films.

Abstract Image

钙钛矿薄膜加工中复合速率和寿命的成像研究。
高质量多晶钙钛矿薄膜的大规模制备和优化是科研和工业领域面临的重大挑战。从单点测量到成像技术的转变促进了从实验室规模到大规模处理的过渡。虽然单点光致发光(PL)方法提供了对局部光电特性的深入了解,但它们不足以评估均匀性和空间特性的可靠信息。目前,没有一种基于PL的成像方法可以提供与单点PL方法相当的载流子动力学信息深度。为此,本文介绍了一种基于双脉冲激励的无创成像技术。改变脉冲之间的时间延迟可以产生薄膜中相对光致发光量子产率(rPLQY)的空间信息,从而产生基本的光电特性,如外辐射和有效非辐射复合率和载流子寿命。与传统的pl成像和k成像相比,rplqy成像在揭示载流子动力学方面具有优势。该技术被证明适用于各种样品结构,而不考虑电极和电荷传输层的存在。此外,该方法还可以估计表面复合速度以及逃逸和寄生吸收概率的变化。总的来说,rplqy成像方法成为旨在表征和优化大面积钙钛矿薄膜的科学研究的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信