{"title":"Recent advances in enzymes active on lignin-derived aromatic compounds.","authors":"Megan E Wolf, Lindsay D Eltis","doi":"10.1016/j.tibs.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin is an attractive alternative to fossil fuels as a feedstock for the sustainable manufacture of chemicals. Emergent strategies for lignin valorization include tandem processes whereby thermochemical fractionation of the biomass yields a mixture of lignin-derived aromatic compounds (LDACs), which are then transformed into target compounds by a microbial cell factory. Identifying LDAC-degrading pathways is critical to optimize carbon yield from diverse depolymerization mixtures. Characterizing enzymes - especially those that catalyze the rate-limiting steps of O-demethylation, hydroxylation, and decarboxylation - informs and enables biocatalyst design. Rational, structure-based engineering of key enzymes, as well as untargeted, evolution-based approaches, further optimize biocatalysis. In this review we outline recent advances in these fields which are critical in developing biocatalysts to efficiently synthesize lignin-based bioproducts.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.01.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin is an attractive alternative to fossil fuels as a feedstock for the sustainable manufacture of chemicals. Emergent strategies for lignin valorization include tandem processes whereby thermochemical fractionation of the biomass yields a mixture of lignin-derived aromatic compounds (LDACs), which are then transformed into target compounds by a microbial cell factory. Identifying LDAC-degrading pathways is critical to optimize carbon yield from diverse depolymerization mixtures. Characterizing enzymes - especially those that catalyze the rate-limiting steps of O-demethylation, hydroxylation, and decarboxylation - informs and enables biocatalyst design. Rational, structure-based engineering of key enzymes, as well as untargeted, evolution-based approaches, further optimize biocatalysis. In this review we outline recent advances in these fields which are critical in developing biocatalysts to efficiently synthesize lignin-based bioproducts.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.