Xiaoxia Zhong, Yiyu Lu, Haiyun Lin, Ziwei Wu, Yicai Luo, Zhimao Ye, Hongbing Liao, Hao Li
{"title":"Electrospun Nanofiber Membrane with Sustained Release of Mogroside V Enhances Alveolar Bone Defect Repair in Diabetic Rats.","authors":"Xiaoxia Zhong, Yiyu Lu, Haiyun Lin, Ziwei Wu, Yicai Luo, Zhimao Ye, Hongbing Liao, Hao Li","doi":"10.1021/acsbiomaterials.4c01918","DOIUrl":null,"url":null,"abstract":"<p><p>The impaired healing of alveolar bone defects in diabetic patients has attracted considerable attention, with Mogroside V (MV) emerging as a promising candidate due to its demonstrated antioxidation, hypoglycemic, and anti-inflammatory properties in patients with diabetes mellitus. To address the limitations of oral MV administration, such as low bioavailability, rapid metabolism, and a short half-life, we developed a nanofiber membrane utilizing electrospinning technology for topical application by preparing membranes using MV, chitosan (CS), nanohydroxyapatite (HA), and poly(vinyl alcohol) (PVA) as raw materials to prolong the effect of MV and enhance bone regeneration in diabetic patients. The MV/HA/PVA/CS exhibited a good fiber diameter, prolonged drug release, and suitable degradation time, along with other favorable properties. In vitro experiments revealed its excellent biocompatibility, effectiveness in promoting osteogenesis, upregulation of osteogenic and anti-inflammatory genes, and concurrent downregulation of pro-inflammatory genes. In vivo evaluations further confirmed its ability to effectively modulate the diabetic microenvironment, reduce bone damage, and facilitate anti-inflammatory effects and alveolar bone regeneration in diabetics. These findings suggest that a nanofiber membrane with sustained release of MV may serve as a promising biomaterial, providing new insights into improving the healing of diabetic alveolar bone defects.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01918","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The impaired healing of alveolar bone defects in diabetic patients has attracted considerable attention, with Mogroside V (MV) emerging as a promising candidate due to its demonstrated antioxidation, hypoglycemic, and anti-inflammatory properties in patients with diabetes mellitus. To address the limitations of oral MV administration, such as low bioavailability, rapid metabolism, and a short half-life, we developed a nanofiber membrane utilizing electrospinning technology for topical application by preparing membranes using MV, chitosan (CS), nanohydroxyapatite (HA), and poly(vinyl alcohol) (PVA) as raw materials to prolong the effect of MV and enhance bone regeneration in diabetic patients. The MV/HA/PVA/CS exhibited a good fiber diameter, prolonged drug release, and suitable degradation time, along with other favorable properties. In vitro experiments revealed its excellent biocompatibility, effectiveness in promoting osteogenesis, upregulation of osteogenic and anti-inflammatory genes, and concurrent downregulation of pro-inflammatory genes. In vivo evaluations further confirmed its ability to effectively modulate the diabetic microenvironment, reduce bone damage, and facilitate anti-inflammatory effects and alveolar bone regeneration in diabetics. These findings suggest that a nanofiber membrane with sustained release of MV may serve as a promising biomaterial, providing new insights into improving the healing of diabetic alveolar bone defects.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture