Habituation to novel stimuli alters hippocampal plasticity associated with morphine tolerance in male Wistar rats.

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Ghazaleh Ghamkharinejad, Francesca Mottarlini, Zohreh Tavassoli, Lucia Caffino, Fabio Fumagalli, Judith R Homberg, Yaghoub Fathollahi
{"title":"Habituation to novel stimuli alters hippocampal plasticity associated with morphine tolerance in male Wistar rats.","authors":"Ghazaleh Ghamkharinejad, Francesca Mottarlini, Zohreh Tavassoli, Lucia Caffino, Fabio Fumagalli, Judith R Homberg, Yaghoub Fathollahi","doi":"10.1016/j.brainres.2025.149508","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic morphine exposure affects neuroplasticity in the hippocampus, a key area for learning and memory. Since, novelty exploration influence rodent hippocampal plasticity, the aim of this study was to investigate the effects of habituation to novel contexts and odors on hippocampal plasticity in morphine-tolerant rats. For this purpose, neurogenesis markers, dendritic spine density and mRNA levels for various genes encoding neurotrophic factors were evaluated in the hippocampus tissue (ventral, vH vs. dorsal, dH) of male rats. Habituation to the new environment was established using animal models of morphine tolerance. Following multiple exposures to a novel context (open field habituation, OFH) or a series of novel odors (odor habituation, OH), markers (Ki67 or DCX) associated with neurogenesis were found to be lower in the morphine-tolerant rats that underwent habituation than the non-habituated morphine-tolerant rats, with specific regions (dH, vH), being differently influenced by specific type of habituation (OFH, OH, respectively). Further results showed subregion and habituation specific effects on the number of dendritic spines per spine type or levels of neurotropic factors including BDNF and TrkB mRNA levels in the dH and vH in morphine-tolerant rats that underwent habituation as compared to the non-habituated morphine-tolerant rats. We provide new evidence that habituation to novel contexts and novel odors appears to affect hippocampal plasticity in morphine-tolerant rats and that pro-plasticity molecules appear to mediate habituation effects on morphine tolerance plasticity.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149508"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2025.149508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic morphine exposure affects neuroplasticity in the hippocampus, a key area for learning and memory. Since, novelty exploration influence rodent hippocampal plasticity, the aim of this study was to investigate the effects of habituation to novel contexts and odors on hippocampal plasticity in morphine-tolerant rats. For this purpose, neurogenesis markers, dendritic spine density and mRNA levels for various genes encoding neurotrophic factors were evaluated in the hippocampus tissue (ventral, vH vs. dorsal, dH) of male rats. Habituation to the new environment was established using animal models of morphine tolerance. Following multiple exposures to a novel context (open field habituation, OFH) or a series of novel odors (odor habituation, OH), markers (Ki67 or DCX) associated with neurogenesis were found to be lower in the morphine-tolerant rats that underwent habituation than the non-habituated morphine-tolerant rats, with specific regions (dH, vH), being differently influenced by specific type of habituation (OFH, OH, respectively). Further results showed subregion and habituation specific effects on the number of dendritic spines per spine type or levels of neurotropic factors including BDNF and TrkB mRNA levels in the dH and vH in morphine-tolerant rats that underwent habituation as compared to the non-habituated morphine-tolerant rats. We provide new evidence that habituation to novel contexts and novel odors appears to affect hippocampal plasticity in morphine-tolerant rats and that pro-plasticity molecules appear to mediate habituation effects on morphine tolerance plasticity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research
Brain Research 医学-神经科学
CiteScore
5.90
自引率
3.40%
发文量
268
审稿时长
47 days
期刊介绍: An international multidisciplinary journal devoted to fundamental research in the brain sciences. Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed. With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信