Investigating the GHG emissions, air pollution and public health impacts from China's aluminium industry: Historical variations and future mitigation potential.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Journal of Environmental Management Pub Date : 2025-03-01 Epub Date: 2025-02-15 DOI:10.1016/j.jenvman.2025.124530
Xueyuan Zhu, Qiang Jin
{"title":"Investigating the GHG emissions, air pollution and public health impacts from China's aluminium industry: Historical variations and future mitigation potential.","authors":"Xueyuan Zhu, Qiang Jin","doi":"10.1016/j.jenvman.2025.124530","DOIUrl":null,"url":null,"abstract":"<p><p>China's aluminium industry, contributing 50% of the global aluminium sector's GHG emissions, is undergoing technology upgrading and energy transition. Facing the dual challenges of carbon neutrality and air pollution control, it is necessary to investigate the GHG emissions and air quality related health risks from aluminium production. Here, we traced the spatiotemporal GHG and air pollutant emissions from China's aluminium industry since 2010. We found that the annual GHG emissions increased from 313 Mt CO<sub>2</sub> to 621 Mt CO<sub>2</sub> over a decade, while air pollutant emissions decreased by 42.9%-68.6%. Through regional chemical transport model and the exposure-response model, we quantified the regional health risks, finding that the mortalities fell from 52,900 to 36,500 with complex spatial heterogeneity. Through emission driving force analysis and aluminium related policy review, we demonstrated that China's air pollution control policy, aluminium capacity migration plan and energy transition plan have a mitigation effect on the emissions and health risks. Moreover, we proposed six mitigation measures and investigated the future mitigation potential through scenario analysis. We found that the critical criteria for carbon neutrality should be natural gas and hydrogen dominated alumina refining, 100% electrolysis decarbonisation, 65% recycled aluminium ratio, 80% penetration rate of inert anodes and 50 Mt CO<sub>2</sub> capture. As a co-benefit, the emissions of SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> can be reduced by up to 97.1%, 97.0%, 89.6%, and 90.5%. These findings provide new insights into carbon neutrality and air pollution mitigation for the aluminium industry.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124530"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124530","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

China's aluminium industry, contributing 50% of the global aluminium sector's GHG emissions, is undergoing technology upgrading and energy transition. Facing the dual challenges of carbon neutrality and air pollution control, it is necessary to investigate the GHG emissions and air quality related health risks from aluminium production. Here, we traced the spatiotemporal GHG and air pollutant emissions from China's aluminium industry since 2010. We found that the annual GHG emissions increased from 313 Mt CO2 to 621 Mt CO2 over a decade, while air pollutant emissions decreased by 42.9%-68.6%. Through regional chemical transport model and the exposure-response model, we quantified the regional health risks, finding that the mortalities fell from 52,900 to 36,500 with complex spatial heterogeneity. Through emission driving force analysis and aluminium related policy review, we demonstrated that China's air pollution control policy, aluminium capacity migration plan and energy transition plan have a mitigation effect on the emissions and health risks. Moreover, we proposed six mitigation measures and investigated the future mitigation potential through scenario analysis. We found that the critical criteria for carbon neutrality should be natural gas and hydrogen dominated alumina refining, 100% electrolysis decarbonisation, 65% recycled aluminium ratio, 80% penetration rate of inert anodes and 50 Mt CO2 capture. As a co-benefit, the emissions of SO2, NOx, PM2.5 and PM10 can be reduced by up to 97.1%, 97.0%, 89.6%, and 90.5%. These findings provide new insights into carbon neutrality and air pollution mitigation for the aluminium industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信