Analysis of frequency domain features for the classification of evoked emotions using EEG signals.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Samannaya Adhikari, Nitin Choudhury, Swastika Bhattacharya, Nabamita Deb, Daisy Das, Rajdeep Ghosh, Souvik Phadikar, Ebrahim Ghaderpour
{"title":"Analysis of frequency domain features for the classification of evoked emotions using EEG signals.","authors":"Samannaya Adhikari, Nitin Choudhury, Swastika Bhattacharya, Nabamita Deb, Daisy Das, Rajdeep Ghosh, Souvik Phadikar, Ebrahim Ghaderpour","doi":"10.1007/s00221-025-07002-1","DOIUrl":null,"url":null,"abstract":"<p><p>Emotion is a natural instinctive state of mind that greatly influences human physiological activities and daily life decisions. Electroencephalogram (EEG) signals created from the central nervous system are very useful for emotion recognition and classification. In this study, EEG signals of individuals are analyzed by the variational mode decomposition (VMD) for frequency domain features to recognize visual stimuli-based evoked emotions (happy, sad, fear). After cleaning EEG signals from artifacts, VMD is employed to decompose the signal into its respective intrinsic mode functions (IMFs). A sliding windowing approach is adopted to calculate the power distributions in each of the predefined frequency bands. The results reveal that extracting frequency domain features using a sliding window of 3 s significantly enhances the efficiency of analyzing induced emotions in subjects. The random forest model shows promising results in classifying various emotions, achieving an accuracy of 99.57% for validation and 99.36% for testing. Moreover, it is observed that the fifth IMF has a strong relationship with emotion elicited from visual stimuli. In addition, the features of the trained model are analyzed by Shapley additive explanations.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 3","pages":"65"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07002-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion is a natural instinctive state of mind that greatly influences human physiological activities and daily life decisions. Electroencephalogram (EEG) signals created from the central nervous system are very useful for emotion recognition and classification. In this study, EEG signals of individuals are analyzed by the variational mode decomposition (VMD) for frequency domain features to recognize visual stimuli-based evoked emotions (happy, sad, fear). After cleaning EEG signals from artifacts, VMD is employed to decompose the signal into its respective intrinsic mode functions (IMFs). A sliding windowing approach is adopted to calculate the power distributions in each of the predefined frequency bands. The results reveal that extracting frequency domain features using a sliding window of 3 s significantly enhances the efficiency of analyzing induced emotions in subjects. The random forest model shows promising results in classifying various emotions, achieving an accuracy of 99.57% for validation and 99.36% for testing. Moreover, it is observed that the fifth IMF has a strong relationship with emotion elicited from visual stimuli. In addition, the features of the trained model are analyzed by Shapley additive explanations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信