Electric Field Polarity Controls Distribution of Viral Bioreceptors within Near-Field Electrospun Biohybrid Microfiber Optical Biosensors.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Stephen T Hsieh, Jordyn M Watkins, Zaira Alibay, Joshua M Plank, Kalie Inouye, Nosang V Myung, Elaine D Haberer
{"title":"Electric Field Polarity Controls Distribution of Viral Bioreceptors within Near-Field Electrospun Biohybrid Microfiber Optical Biosensors.","authors":"Stephen T Hsieh, Jordyn M Watkins, Zaira Alibay, Joshua M Plank, Kalie Inouye, Nosang V Myung, Elaine D Haberer","doi":"10.1021/acsabm.4c01761","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms (e.g., bacteria, fungi, and viruses) add indispensable functionality to a range of electrospun polymer materials and devices. The optimal distribution of bioactive agents on either the interior or exterior of the fiber is application-specific. Current microbe surface immobilization strategies and core-confinement techniques continue to pose a number of challenges. Here, we explore a simple strategy, utilizing electrostatic forces, to control the migration and surface concentration of the M13 bacteriophage within near-field electrospun poly(vinyl alcohol) (PVA) microfibers. Both the surface charge of the electrospun virus and the applied electric field polarity altered microbe placement. When doped with Rhodamine 6G (R6G), the circular microfiber cross sections formed active whispering gallery mode (WGM) resonators. These relatively high-quality (<i>Q</i>) optical cavities enabled us to sensitively probe the virus content of their outer layer, while functioning as label-free optical biosensors with phage-based streptavidin biorecognition elements. Coulomb forces displayed significant control over M13 surface coverage during near-field electrospinning, increasing biosensor response by nearly a factor of 4 to 1310 nM streptavidin. These findings are an important demonstration of electrostatic forces as a simple, yet adaptable method to enhance biohybrid fiber functionality and performance by tailoring microbe distribution.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms (e.g., bacteria, fungi, and viruses) add indispensable functionality to a range of electrospun polymer materials and devices. The optimal distribution of bioactive agents on either the interior or exterior of the fiber is application-specific. Current microbe surface immobilization strategies and core-confinement techniques continue to pose a number of challenges. Here, we explore a simple strategy, utilizing electrostatic forces, to control the migration and surface concentration of the M13 bacteriophage within near-field electrospun poly(vinyl alcohol) (PVA) microfibers. Both the surface charge of the electrospun virus and the applied electric field polarity altered microbe placement. When doped with Rhodamine 6G (R6G), the circular microfiber cross sections formed active whispering gallery mode (WGM) resonators. These relatively high-quality (Q) optical cavities enabled us to sensitively probe the virus content of their outer layer, while functioning as label-free optical biosensors with phage-based streptavidin biorecognition elements. Coulomb forces displayed significant control over M13 surface coverage during near-field electrospinning, increasing biosensor response by nearly a factor of 4 to 1310 nM streptavidin. These findings are an important demonstration of electrostatic forces as a simple, yet adaptable method to enhance biohybrid fiber functionality and performance by tailoring microbe distribution.

微生物(如细菌、真菌和病毒)为一系列电纺聚合物材料和设备增添了不可或缺的功能。生物活性剂在纤维内部或外部的最佳分布取决于具体应用。目前的微生物表面固定策略和夹芯技术仍面临诸多挑战。在这里,我们探索了一种利用静电力控制 M13 噬菌体在近场电纺聚乙烯醇(PVA)微纤维内迁移和表面集中的简单策略。电纺病毒的表面电荷和施加的电场极性都会改变微生物的位置。在掺入罗丹明 6G(R6G)后,圆形微纤维横截面形成了活跃的耳语画廊模式(WGM)谐振器。这些相对高质量(Q 值)的光腔使我们能够灵敏地探测其外层的病毒含量,同时利用基于噬菌体的链霉亲和素生物识别元件充当无标记光学生物传感器。在近场电纺丝过程中,库仑力对 M13 的表面覆盖有显著的控制作用,将生物传感器的响应提高了近 4 倍,达到 1310 nM 链霉亲和素。这些发现是静电力作为一种简单而又适应性强的方法的重要证明,它可以通过定制微生物分布来增强生物杂交纤维的功能和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信