{"title":"Network pharmacology and experimental verification in vivo reveal the mechanism of Zhushao Granules against ulcerative colitis.","authors":"Benjiao Gong, Chenglin Zhang, Shaofei Hu, Xueying Zhang, Hui Zou, Jiayao Li, Jiahui Wang, Yanlei Kao, Fujun Liu","doi":"10.1186/s12575-025-00268-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Zhushao Granules (ZSG) had exhibited beneficial effects in the treatment of ulcerative colitis (UC) as an effective herbal prescription in Traditional Chinese Medicine. However, the underlying anti-inflammatory mechanism of ZSG remains unclear. This study aimed to decipher the mechanism of ZSG against UC combining network pharmacology and animal-based experiments.</p><p><strong>Methods: </strong>Network pharmacology was employed to identify active components and therapeutic targets of ZSG against UC. The protein-protein interaction (PPI) network was constructed among the therapeutic targets using the STRING database, and GO and pathway analyses were carried out using DAVID. Then, the \"herb-component-target-pathway\" network based on therapeutic targets was established and the topological parameters were subsequently calculated to identify hub active components, targets and pathways by Cytoscape. Finally, the therapeutic function and the special pathway of ZSG against UC were validated using a TNBS-induced UC model in BABL/c mice.</p><p><strong>Results: </strong>Ninety-four active components of ZSG and 460 potential targets were acquired from the Encyclopedia of Traditional Chinese Medicine and Tradition Chinese Medicine Systems Pharmacology Database and Analysis Platform. 884 potential targets of UC were obtained from OMIM and HINT. Sixty-two overlapping potential targets were identified as therapeutic targets of ZSG against UC. PPI network filtered out 61 therapeutic targets. GO and pathway analyses extracted 48, 25, and 98 terms corresponding to biological processes, molecular functions and Reactome pathways, respectively. Enrichment analysis suggested that the therapeutic targets were mainly involved in immune regulation, especially RIP-mediated NF-κB activation via ZBP1. Topological analysis of the \"herb-component-target-pathway\" network recognized 9 hub components, 20 hub targets and 18 hub pathways. The animal-based experiments revealed that ZSG ameliorated symptoms and histological changes in TNBS-induced colitis by significantly inhibiting the ZBP1/RIP/NF-κB pathway.</p><p><strong>Conclusions: </strong>ZSG might alleviate the mucosal damage and ameliorate colitis via targeting ZBP1/RIP/NF-κB pathway, which laid the theoretical foundation for the clinical application and further study of ZSG and provided new insights into UC treatment.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"27 1","pages":"7"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-025-00268-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Zhushao Granules (ZSG) had exhibited beneficial effects in the treatment of ulcerative colitis (UC) as an effective herbal prescription in Traditional Chinese Medicine. However, the underlying anti-inflammatory mechanism of ZSG remains unclear. This study aimed to decipher the mechanism of ZSG against UC combining network pharmacology and animal-based experiments.
Methods: Network pharmacology was employed to identify active components and therapeutic targets of ZSG against UC. The protein-protein interaction (PPI) network was constructed among the therapeutic targets using the STRING database, and GO and pathway analyses were carried out using DAVID. Then, the "herb-component-target-pathway" network based on therapeutic targets was established and the topological parameters were subsequently calculated to identify hub active components, targets and pathways by Cytoscape. Finally, the therapeutic function and the special pathway of ZSG against UC were validated using a TNBS-induced UC model in BABL/c mice.
Results: Ninety-four active components of ZSG and 460 potential targets were acquired from the Encyclopedia of Traditional Chinese Medicine and Tradition Chinese Medicine Systems Pharmacology Database and Analysis Platform. 884 potential targets of UC were obtained from OMIM and HINT. Sixty-two overlapping potential targets were identified as therapeutic targets of ZSG against UC. PPI network filtered out 61 therapeutic targets. GO and pathway analyses extracted 48, 25, and 98 terms corresponding to biological processes, molecular functions and Reactome pathways, respectively. Enrichment analysis suggested that the therapeutic targets were mainly involved in immune regulation, especially RIP-mediated NF-κB activation via ZBP1. Topological analysis of the "herb-component-target-pathway" network recognized 9 hub components, 20 hub targets and 18 hub pathways. The animal-based experiments revealed that ZSG ameliorated symptoms and histological changes in TNBS-induced colitis by significantly inhibiting the ZBP1/RIP/NF-κB pathway.
Conclusions: ZSG might alleviate the mucosal damage and ameliorate colitis via targeting ZBP1/RIP/NF-κB pathway, which laid the theoretical foundation for the clinical application and further study of ZSG and provided new insights into UC treatment.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.