Phanerozoic icehouse climates as the result of multiple solid-Earth cooling mechanisms

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2025-02-14
Andrew S. Merdith, Thomas M. Gernon, Pierre Maffre, Yannick Donnadieu, Yves Goddéris, Jack Longman, R. Dietmar Müller, Benjamin J. W. Mills
{"title":"Phanerozoic icehouse climates as the result of multiple solid-Earth cooling mechanisms","authors":"Andrew S. Merdith,&nbsp;Thomas M. Gernon,&nbsp;Pierre Maffre,&nbsp;Yannick Donnadieu,&nbsp;Yves Goddéris,&nbsp;Jack Longman,&nbsp;R. Dietmar Müller,&nbsp;Benjamin J. W. Mills","doi":"","DOIUrl":null,"url":null,"abstract":"<div >The Phanerozoic climate has been interrupted by two long “icehouse” intervals, including the current icehouse of the last ~34 million years. While these cool intervals correspond to lower atmospheric CO<sub>2</sub>, it is unclear why CO<sub>2</sub> levels fell, with hypotheses suggesting changes in CO<sub>2</sub> degassing rates or modification of silicate weathering through changing continental lithology or paleogeography. Here, we construct an Earth System Model that integrates these proposed cooling mechanisms in detail. The model can reproduce the broad geologic record of ice cap expansion, allowing us to infer the primary drivers of long-term climate change. Our results indicate that recent icehouse climates required a combination of different cooling mechanisms acting simultaneously and were not driven by a single known process, potentially explaining why icehouses have been rarer than greenhouses over Earth history.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 7","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adm9798","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adm9798","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Phanerozoic climate has been interrupted by two long “icehouse” intervals, including the current icehouse of the last ~34 million years. While these cool intervals correspond to lower atmospheric CO2, it is unclear why CO2 levels fell, with hypotheses suggesting changes in CO2 degassing rates or modification of silicate weathering through changing continental lithology or paleogeography. Here, we construct an Earth System Model that integrates these proposed cooling mechanisms in detail. The model can reproduce the broad geologic record of ice cap expansion, allowing us to infer the primary drivers of long-term climate change. Our results indicate that recent icehouse climates required a combination of different cooling mechanisms acting simultaneously and were not driven by a single known process, potentially explaining why icehouses have been rarer than greenhouses over Earth history.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信