A PDMS/Silicon Adhesion Control Method at Millimeter-Scale Based on Microvibration

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jiawei Yi, Wissem Haouas, Michaël Gauthier, Kanty Rabenorosoa
{"title":"A PDMS/Silicon Adhesion Control Method at Millimeter-Scale Based on Microvibration","authors":"Jiawei Yi,&nbsp;Wissem Haouas,&nbsp;Michaël Gauthier,&nbsp;Kanty Rabenorosoa","doi":"10.1002/aisy.202400394","DOIUrl":null,"url":null,"abstract":"<p>Switchable surface adhesion at a small scale is crucial for robot end-effector design, allowing the manipulation of small objects such as semiconductors, optical lenses, and precision mechanical parts. In this work, a detailed characterization of a millimeter-scale (1–5 mm) adhesion modulation method is performed, demonstrating its effectiveness for switching adhesion on small, lightweight objects with smooth surfaces. This modulation phenomenon arises from the viscoelastic behavior when PDMS interacts with a rigid surface and is controlled via microvibration. A maximum apparent adhesion enhancement of 2400% and a reduction of 50% are achieved with a 1 mm-diameter PDMS hemisphere vibrating at a 30 μm amplitude and a 700 Hz frequency. The effects of different parameters, including size, actuation amplitude/frequency, surface roughness, and material properties, on adhesion performance are carefully measured and analyzed. A monotonic increase in maximum adhesion is observed with increased device size and surface smoothness, while nonlinear relationships of other factors are generalized with a numerical model. A long working lifespan and high endurance are also observed during the characterization. This work serves as a practical reference for the further design of small-scale soft grippers, highlighting its continuous, large modulation range, simple structure, and flexible control.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400394","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Switchable surface adhesion at a small scale is crucial for robot end-effector design, allowing the manipulation of small objects such as semiconductors, optical lenses, and precision mechanical parts. In this work, a detailed characterization of a millimeter-scale (1–5 mm) adhesion modulation method is performed, demonstrating its effectiveness for switching adhesion on small, lightweight objects with smooth surfaces. This modulation phenomenon arises from the viscoelastic behavior when PDMS interacts with a rigid surface and is controlled via microvibration. A maximum apparent adhesion enhancement of 2400% and a reduction of 50% are achieved with a 1 mm-diameter PDMS hemisphere vibrating at a 30 μm amplitude and a 700 Hz frequency. The effects of different parameters, including size, actuation amplitude/frequency, surface roughness, and material properties, on adhesion performance are carefully measured and analyzed. A monotonic increase in maximum adhesion is observed with increased device size and surface smoothness, while nonlinear relationships of other factors are generalized with a numerical model. A long working lifespan and high endurance are also observed during the characterization. This work serves as a practical reference for the further design of small-scale soft grippers, highlighting its continuous, large modulation range, simple structure, and flexible control.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信