Portable Machine Tools by Small Piezoelectric Robots for Scalable and Waviness-Adaptive Fabrication of Surface Microstructures

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Peiyuan Ding, Jianfu Zhang, Pingfa Feng, Xiangyu Zhang, Jianjian Wang
{"title":"Portable Machine Tools by Small Piezoelectric Robots for Scalable and Waviness-Adaptive Fabrication of Surface Microstructures","authors":"Peiyuan Ding,&nbsp;Jianfu Zhang,&nbsp;Pingfa Feng,&nbsp;Xiangyu Zhang,&nbsp;Jianjian Wang","doi":"10.1002/aisy.202400322","DOIUrl":null,"url":null,"abstract":"<p>Surface functional microstructures exhibit extensive application requirements in an array of breakthrough areas. One critical problem that restricts their industrial application is the lack of scalable fabrication techniques due to the limitation of conventional machine tools. This study proposes a scalable surface texturing technique using a portable small (30 × 19 × 22 mm) three-leg robot that walks and works on the workpiece surface. Due to the elliptical tool vibration, microgrooves can be created on the workpiece surface periodically; meanwhile, the machining force drives the robot to walk forward. Surface texturing experiments are conducted on aluminum and copper workpieces to explore the machining performance of the small robot. The robot can reach a maximum moving velocity of 6.3 mm s<sup>−1</sup> and can produce microstructures with a spacing of 4–14 μm on workpiece surfaces. Owing to its unique working principle, the small robot can maintain a constant depth of cut, demonstrating its capacity to adapt to the surface waviness of the workpiece. Finally, the motion straightness of the robot is greatly improved by combining it with the auxiliary track, and multiline microstructures are obtained. In short, the developed small robot presents a promising solution to the challenge of scalable surface texturing.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400322","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface functional microstructures exhibit extensive application requirements in an array of breakthrough areas. One critical problem that restricts their industrial application is the lack of scalable fabrication techniques due to the limitation of conventional machine tools. This study proposes a scalable surface texturing technique using a portable small (30 × 19 × 22 mm) three-leg robot that walks and works on the workpiece surface. Due to the elliptical tool vibration, microgrooves can be created on the workpiece surface periodically; meanwhile, the machining force drives the robot to walk forward. Surface texturing experiments are conducted on aluminum and copper workpieces to explore the machining performance of the small robot. The robot can reach a maximum moving velocity of 6.3 mm s−1 and can produce microstructures with a spacing of 4–14 μm on workpiece surfaces. Owing to its unique working principle, the small robot can maintain a constant depth of cut, demonstrating its capacity to adapt to the surface waviness of the workpiece. Finally, the motion straightness of the robot is greatly improved by combining it with the auxiliary track, and multiline microstructures are obtained. In short, the developed small robot presents a promising solution to the challenge of scalable surface texturing.

Abstract Image

基于小型压电机器人的便携式机床用于可扩展和自适应波形的表面微结构加工
表面功能微结构在一系列突破性领域表现出广泛的应用需求。限制其工业应用的一个关键问题是由于传统机床的限制而缺乏可扩展的制造技术。本研究提出了一种可扩展的表面纹理技术,使用便携式小型(30 × 19 × 22 mm)三腿机器人在工件表面行走和工作。由于刀具的椭圆振动,工件表面周期性地形成微槽;同时,加工力驱动机器人向前行走。在铝和铜工件上进行表面变形实验,探索小型机器人的加工性能。该机器人的最大移动速度可达6.3 mm s−1,并能在工件表面形成4 ~ 14 μm的微结构。由于其独特的工作原理,小型机器人可以保持恒定的切割深度,显示出其适应工件表面波浪度的能力。最后,将其与辅助轨迹相结合,大大提高了机器人的运动直线度,获得了多线微结构。简而言之,开发的小型机器人为可伸缩表面纹理的挑战提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信