Hamza Khan, Min Cheol Lee, Jeong Suh, Ryoonhan Kim
{"title":"Enhancing Robot End-Effector Trajectory Tracking Using Virtual Force-Tracking Impedance Control","authors":"Hamza Khan, Min Cheol Lee, Jeong Suh, Ryoonhan Kim","doi":"10.1002/aisy.202400380","DOIUrl":null,"url":null,"abstract":"<p>This article presents an extended Cartesian space robot control framework that features a virtual force tracking impedance control to enhance the end-effector trajectory tracking performance. Initially, the concept of a virtual surface is introduced, which is assumed to be at some constant distance from the desired end-effector trajectory. This virtual surface generates a virtual contact force when interacting with the torque-controlled robot end-effector. The interaction is then manipulated using an impedance control model to track a constant desired force. If the robot end-effector deviates from the desired trajectory, the constant force-tracking impedance control generates a compliance trajectory that regulates the end-effector movements, constraining it to the desired trajectory. For robust force tracking, impedance parameters are optimally tuned using a closed-loop dynamic model incorporating both robot and impedance dynamics. Additionally, super twisting sliding mode control (STSMC) is integrated to overcome uncertainties and the impact of robot dynamics on force-tracking performance. Experimental validation confirms the theoretical claims of the proposed approach. It demonstrates that force-tracking impedance control improves the end-effector trajectory tracking by quickly reacting to the dynamic trajectories compared to position control only and effectively maintains it on the desired trajectories.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400380","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an extended Cartesian space robot control framework that features a virtual force tracking impedance control to enhance the end-effector trajectory tracking performance. Initially, the concept of a virtual surface is introduced, which is assumed to be at some constant distance from the desired end-effector trajectory. This virtual surface generates a virtual contact force when interacting with the torque-controlled robot end-effector. The interaction is then manipulated using an impedance control model to track a constant desired force. If the robot end-effector deviates from the desired trajectory, the constant force-tracking impedance control generates a compliance trajectory that regulates the end-effector movements, constraining it to the desired trajectory. For robust force tracking, impedance parameters are optimally tuned using a closed-loop dynamic model incorporating both robot and impedance dynamics. Additionally, super twisting sliding mode control (STSMC) is integrated to overcome uncertainties and the impact of robot dynamics on force-tracking performance. Experimental validation confirms the theoretical claims of the proposed approach. It demonstrates that force-tracking impedance control improves the end-effector trajectory tracking by quickly reacting to the dynamic trajectories compared to position control only and effectively maintains it on the desired trajectories.