Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances

IF 2.4 4区 生物学 Q2 DEVELOPMENTAL BIOLOGY
genesis Pub Date : 2025-02-17 DOI:10.1002/dvg.70012
Sai Zhang, Meng Gao, Shuzhe Song, Tongdan Zhao, Bianhua Zhou, Hongwei Wang, Weishun Tian, Wenpeng Zhao, Jing Zhao
{"title":"Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances","authors":"Sai Zhang,&nbsp;Meng Gao,&nbsp;Shuzhe Song,&nbsp;Tongdan Zhao,&nbsp;Bianhua Zhou,&nbsp;Hongwei Wang,&nbsp;Weishun Tian,&nbsp;Wenpeng Zhao,&nbsp;Jing Zhao","doi":"10.1002/dvg.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Osteoporosis is a metabolic bone disease primarily caused by a decreased bone formation and increased bone resorption. Osteoclasts are a special class of terminally differentiated cells that play an important role in normal bone remodeling and bone loss in osteoporosis as well as in a variety of osteolytic diseases. Osteoclasts can be differentiated from monocyte–macrophage cells of the hematopoietic system; they are the key cells in bone resorption. Osteoclast formation and differentiation are regulated by various cytokines and transcription factors. In this review, we summarize recent advances in research on the regulation of osteoclast differentiation and function by factors such as M-CSF, RANKL, AP-1, NFATC1, MITF, and PU.1. Understanding these cytokines and transcription factors can not only help identify targets for osteoclast differentiation but also aid in intervening in the treatment of osteoclast-related diseases.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis is a metabolic bone disease primarily caused by a decreased bone formation and increased bone resorption. Osteoclasts are a special class of terminally differentiated cells that play an important role in normal bone remodeling and bone loss in osteoporosis as well as in a variety of osteolytic diseases. Osteoclasts can be differentiated from monocyte–macrophage cells of the hematopoietic system; they are the key cells in bone resorption. Osteoclast formation and differentiation are regulated by various cytokines and transcription factors. In this review, we summarize recent advances in research on the regulation of osteoclast differentiation and function by factors such as M-CSF, RANKL, AP-1, NFATC1, MITF, and PU.1. Understanding these cytokines and transcription factors can not only help identify targets for osteoclast differentiation but also aid in intervening in the treatment of osteoclast-related diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
genesis
genesis 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders. genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信